ROCKEY4ND
Developer’s Guide

Version 1.1

FEITIAN Technologies Co., Ltd.
Copyright © 1999-2005

FEITIAN Technologies Co., Ltd.

Software Developer’s Agreement

All Products of FEITIAN Technologies Co., Ltd. (FEITIAN) including, but not limited to, evaluation copies,
diskettes, CD-ROMs, hardware and documentation, and all future orders, are subject to the terms of this Agreement.
If you do not agree with the terms herein, please return the evaluation package to us, postage and insurance prepaid,
within seven days of their receipt, and we will reimburse you the cost of the Product, less freight and reasonable
handling charges.

1 Allowable Use — You may merge and link the Software with other programs for the sole purpose of protecting
those programs in accordance with the usage described in the Developer’s Guide. You may make archival copies of
the Software.

2 Prohibited Use — The Software or hardware dongle or any other part of the Product may not be copied,
reengineered, disassembled, decompiled, revised, enhanced or otherwise modified, except as specifically allowed in
item 1. You may not reverse engineer the Software or any part of the product or attempt to discover the Software’s
source code. You may not use the magnetic or optical media included with the Product for the purposes of
transferring or storing data that was not either an original part of the Product, or a FEITIAN provided enhancement
or upgrade to the Product. You may not Transmit Any part of THE SOFTWARE in your public servers.

3 Warranty — FEITIAN warrants that the dongles and Software storage media are substantially free from
significant defects of workmanship or materials for a time period of twelve (12) months from the date of delivery of
the Product to you.

4 Breach of Warranty — In the event of breach of this warranty, FEITIAN’s sole obligation is to replace or repair,
at the discretion of FEITIAN, any Product free of charge. Any replaced Product becomes the property of FEITIAN.

Warranty claims must be made in writing to FEITIAN during the warranty period and within fourteen (14) days after
the observation of the defect. All warranty claims must be accompanied by evidence of the defect that is deemed
satisfactory by FEITIAN. Any Products that you return to FEITIAN, or a FEITIAN authorized distributor, must be
sent with freight and insurance prepaid.

EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY OR REPRESENTATION OF THE
PRODUCT, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

1 Limitation of FEITIAN’s Liability — FEITIAN’s entire liability to you or any other party for any cause
whatsoever, whether in contract or in tort, including negligence, shall not exceed the price you paid for the unit of the
Product that caused the damages or are the subject of, or indirectly related to the cause of action. In no event shall
FEITIAN be liable for any damages caused by your failure to meet your obligations, nor for any loss of data, profit
or savings, or any other consequential and incidental damages, even if FEITIAN has been advised of the possibility
of damages, or for any claim by you based on any third-party claim.

2 Termination — This Agreement shall terminate if you fail to comply with the terms herein. Items 2, 3, 4 and 5
shall survive any termination of this Agreement.

Contact Information

World Wide Web:

www.FTsafe.com

FEITIAN Technologies Co., Ltd.

Tel: +86-10-62304466 Fax: +86-10-62304477 Email: world.sales@Ftsafe.com Add: Bldg 7A, 5 Floor, Xueyuan
Road 40, Haidian District, Beijing 100083, P.R China

Please Email any comments, suggestions or questions regarding this document to us at:
world.sales@Ftsafe.com

Version Date
1.0 2005.9
1.1 2005.10

CE Attestation of Conformity

c € ROCKEY is in conformity with the protection requirements of CE Directives 89/336/EEC

Amending Directive 92/31/EEC. ROCKEY satisfies the limits and verifying methods: EN55022/CISPR 22 Class B,
EN55024: 1998.

FCC Standard

This device is in conformance with Part 15 of the FCC Rules and Regulation for Information
Technology Equipment.

Operation of this product is subject to the following two conditions: (1) this device

may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

1He D.ﬂ
uUSB This equipment is USB based.

Quick Start

1 AIlROCKEY dongles mentioned in this document are ROCKEY4ND dongles.

2 We provide a Developer’s Kit (DK) to software developers for their evaluation. The DK contains everything
you need to evaluate the software protection system: a Developer’s Guide, a CD-ROM and a ROCKEY4ND
dongle(s). The ROCKEY4ND dongles are exactly the same as the commercial version of the product in all
respects, save one. The only difference is that the passwords burned into the demonstration dongles are publicly
known (P1:C44C, P2:C8F8, P3:0799, P4:C43B). After evaluation if you decide to use the product, you can
purchase dongles with secret and unique passwords, so others can not read, edit or modify the content in your
dongles.

Run Setup.exe under the root directory of the CD-ROM, you may finish your required installation with this
installation wizard.

ROCKEY4ND is a driverless dongle that requires no device driver. The operating system has the driver for
ROCKEY4ND embedded inside the system. We provide the driver files in the directory Driver for the
operating systems that may not have these files.

3 To call the ROCKEY4ND dongle, you are not required to install a driver. It is only required to copy the library
(Rockey4ND.dll and specific lib for other programming languages) to the same path of your applications.

You may find the ROCKEY tools, such as the ROCKEY Editor and Envelope Encryption program, in the
directory Tools on the CD-ROM.

RyEnv32_ND.exe is the tool for Envelope Encryption. You do not need to write any code, just choose the Win32
PE files, such as EXE . DLL. ARX files with your mouse, and then you may encrypt them with this program.

(Refer to Chapter 6 -- ROCKEY4ND Envelope Encryption)

4 Rockey4ND_Editor.exe was designed to help you edit, modify, test and write the contents into the dongle in
batch. It is the Utility for you to develop encryption programs.

5 Rockey4RU.exe is the tool for updating ROCKEY4ND remotely. Software developers may use this tool to
perform a remote update for ROCKEY4ND and change the contents of the unit. We provide several remote
update schemes to meet various requirements of your software release.

6 DataRecorder.exe provides a powerful dongle management solution. With the assistance of DataRecorder.exe,
the developer can record the data inside the dongle, the owner of the dongle, the hardware info, the passwords
and other information regarding the unit. A database that records this information will assist developers to
control their software release with convenience.

7 ROCKEY4ND API is the ideal tool for you to make full use of the security functions of ROCKEY4ND in your
applications. You will learn how to use ROCKEY4ND quickly with the reference of provided program samples.

Examples for different programming languages can be found in the directory Samples. The folder Beginner in
Samples provides step-by-step examples to assist users in understanding the functions of ROCKEY4ND.

8 Please visit our website: http://www.FTsafe.com. This site is updated frequently with all relevant information for

the Feitian family of products.

Content

Chapter 1 Brief INtrOQUCTIONccviiieieie ettt ene e e e naenneenes 7
1.1 ADOUL ROCKEYAND ...ttt sttt b et sbe e s e bt et e sb et e b e et e sbe e eneeneabe e 7
1.2 ROCKEYAND AQVANTAGES......eeveiteiiierieiesieetieiesesteateeseesaesteaseeseesaessesseeseessessesseessessessessesssessessenns 8
1.3 How to Choose the Right Software Protection SOIUtIONcccccoveieveiniincecece e 8
Chapter 2 ROCKEYAND Hardware FEATUIEScceciieiiiicieece sttt 9
2.1 ROCKEY4ND INterNal SEFUCTUTE.......cooiiiiiiieieiecic ettt sttt beare s 9
2.2 ROCKEYAND Hardware INTEITACE.ccuiiriiiiiiiieieiieesieeeee sttt 9
Chapter 3 Installing ROCKEYAND SDKcocoviiiiiiicieie sttt ste st sta e te e e e saesrennes 10
3.1 Content 0f the CD-ROM......cooiiiiiice ettt sttt e s reera e beare e 10
3.2 INSTAlING The SDK ..ottt e e sbeere e s et e steareeneentenre e 10
3.3 Uninstalling the Development PACKAQEcc.coviveiiieie e 13
Chapter 4 Concepts fOr DEVEIOPEIScvo ittt ettt reere s 14
4.1 PASSWOITS ...ttt etttk b bbbt bbbt bbb b et bbb bRt b bbb r e 14
4.2 CUSTOMEE COOE ...ttt bbbttt bbbt bt b s bbbt bt b b ettt et e s 14
A3 HAMAWAIE ID ...ttt bbbttt b et b e b e b bt bt b e et e b e s 14
4.4 USEE DAA ZONE ...ttt r e bt r R n Rt r e nre s 14
A5 IMOTUIE ZONE ...t bbb bbbt bbbt b e bt b bt bttt e 14
4.6 MOAUIE ATEFIDULES ...ttt bbbttt e ettt nee s 15
L O I g [o o] 1 4] (1o 1= USSP RS PR 15
BB USEE ID ..o E R R R Rt R R e R R re e nenreeneas 15
4.9 RANAOM NUMIDEE ...ttt bbbt e ettt sb b e bt et et e e et e b e abe e s 15
4.10 Seed and RETUIN VaAIUESooiiiieiie ettt et e st e ste e teenree e 15
Chapter 5 ROCKEYAND EQITOFocviiiiiieeieiesie sttt st ae st ste s eaestesneeneenaesseanens 16
5.1 Brief INTrOOUCTION.iiiiiiiiiic bbbttt bbb 16
I @ 1T ¢ U o] o ISP PSR 19
TG A LT a0 o] L C IR (0] = To - S PSR 27
5.4 L0g File and File SETLINGcccveiiiieseciee ettt e e sraenaenaennenre e 27
SRR o [(0] gl U oo 1 (- SRS 28
Chapter 6 ROCKEY4ND ENVelope ENCIYPLIONc.ooviieieieieeieie e 29
6.1 SiNgle File ENCIYPLION.......coiiiiccce ettt e st e sreenaeneeneenne e 30
I\ LU I Y = g To] Y/ o] AT] o PSPPSR 33
Chapter 7 ROCKEYAND AP ...ttt sttt neebesae e eseanesne e 35
7.1 ROCKEY4ND Function Prototype and Definitioncccccoviviieiece e 35
7.2 ROCKEYAND APT SEIVICESecuiitiitiiteieieete sttt sttt sae ettt st sbe et et sbe e eneenesbe e 37
T.3 RETUIN COUBS ...ttt ettt ettt et et et e e be e be e te e te e be e beesteenteenteestaenseentee e 43
7.4 Basic APPlIcation EXAMPIESc..ooiiieiee ettt st neenne e 44
7.5 Advanced Application EXAMPIES.......c.civeiiiiiieiece et 64
Chapter 8 ROCKEY4ND Hardware AlGOrithmSccoooiiiiiiiccc e 95
8.1 ROCKEY User Defined Algorithm INtrodUCtioNcccevieiiiieieieseceeese e 95
8.2 Writing User Defined Algorithms into ROCKEYcccooveiiiiiiiicic e 99
8.3 User Defined AIgorithm EXamPIES.........cccocviiiiiiiiicese e 100
B INOTE ...ttt bbbt E R bR R R bbbt R bbbt b bbb n e 129
ST I oSSR 129
ROCKEY4ND Technical SPeCITiCatioNccccviiiiiiieic et 131

Chapter 1 Brief Introduction

1.1 About ROCKEY4ND

ROCKEY4ND is an advanced software protection system that attaches to the USB port of a computer. Your software
may be duplicated, but it will only run when your ROCKEY4ND “dongle” is attached to the computer. It can also
limit the use of your software. Your application will interact with ROCKEY4ND at start-up and during runtime. If
the dongle has been removed, or if an application module has been accessed a preset number of times, it can issue an
error message and terminate, or take other alternative actions to ensure compliance with your licensing agreement.
ROCKEY4ND is versatile and can be applied to other scenarios as required.

Unlike some competing products, ROCKEY4ND is a powerful miniature computer, with a CPU, memory and
specialized firmware built-in that allows for a robust interaction with your application. You may write complex
algorithms that are securely stored in the dongle, and then call those algorithms from time-to-time in your application.
This method for software protection is strongly recommended and is very difficult to crack, and although
ROCKEY4ND was designed to implement extremely high levels of security - it is also relatively easy to implement.
The ROCKEY4ND API set has been simplified and improved based on experience gained from earlier versions.

The ROCKEY4ND product also provides an Envelope program. The ROCKEY4ND Envelope (RyEnv32_ND.exe)
will encrypt Windows Portable Executable files (such as .dll, .exe and .arx) and is simple enough to implement in
only a few seconds. The ROCKEY4ND Envelope is an ideal solution if you do not possess the source code for your
application, or are unfamiliar with implementing an API. A security system that combines both the API set and the
Envelope program will offer the greatest level of protection.

There are several components to the ROCKEY4ND software security solution and each of them will be discussed in
this document. The following is an overview of the ROCKEY4ND components, along with a reference to where they
will be discussed in this document:

The ROCKEY4ND Envelope program (RyEnv32 ND.exe) is a fast and convenient means of
encrypting .exe, .dll, .arx and other Portable Executable (PE) files. This solution is ideal if you do not have
access to source code or you are not familiar with the ROCKEY4ND API set. (See Chapter 6: ROCKEY4ND
Envelope Encryption)

The ROCKEY4ND Editor (Rockey4ND_Editor.exe) is a graphical tool for performing operations on the dongle.
The Editor may be used to read data from and write data to the dongle, perform arithmetic operations in the
dongle or test the dongle for malfunctions. (See Chapter 5: ROCKEY4ND Editor)

ROCKEY4ND has an API set that you may use to create flexible and powerful software protection systems. This
document provides VC ++ examples and other examples are provided on the CD-ROM under the
Samples\Beginner directory. (See Chapter 7: ROCKEY4ND API)

Software Protection Mechanism of ROCKEY4ND: The protected software application must call the
ROCKEY4ND dongle during run time, since the application is dependant on the hardware. It is impossible to
duplicate the chipset of the ROCKEY4ND hardware, and so too it is impossible to duplicate your software, ensuring
your software is protected from piracy.

1.2 ROCKEY4ND Advantages

1 Compact Design -- FEITIAN’s USB dongles are among the smallest in the world. The USB dongle is 50mm x
17mm x 7mm.

2 High Speed -- ROCKEY4ND was designed to process even very complex algorithms with minimal delay for
your application. Users will typically notice no degradation in application performance as a result of ROCKY4ND
being implemented.

3 Ease of Use — ROCKY4ND’s reduced API set simplifies the programming effort in implementing API calls
within your code, and the Envelope program has also been improved for increased security with the release of
ROCKEY4ND. Developers lead time in implementing ROCKEY4ND is vastly reduced, saving both time and costs
in deploying security into your software.

4 High Security Levels — Redesigned ROCKEY4ND offers a much higher level of security over previous
version. ROCKEY4ND implements a two level security system to segregate users who require read only access from
those who require administrative privileges. ROCKEY4ND has a built in time gate to prevent software tracking and
is powerful enough to support developer defined algorithms that brings software protection to a new level of security.
5 High Reliability — FEITIAN employs an advanced customers managing system for ROCKEY4ND. We
guarantee that the password of every customer is unique and that the hardware 1D of every dongle is also unique. The
password and hardware ID are burnt into the CPU, it is absolutely impossible to change, even for us—the
manufacturer.

6 Broad Support for Operating Systems -- ROCKEY4ND protected applications may run on: Windows
98SE/ME/2000 /XP/2003; Linux; MAC.

7 Abundant Programming Language Interfaces -- ROCKEY4ND provides interfaces for these common
development tools: PB, DELPHI, VFP, VB, VC, C++ BUILDER and etc.

1.3 How to Choose the Right Software Protection Solution

The protection level applied to software not only depends on the dongle, but also on how the developer uses the
dongle. Even if the dongle is the best in the world, a rudimentary implementation of security with your dongle can
render the total security solution weak. ROCKEY4ND dongles offer two protection methods: envelope encryption
and API encryption.

You may invoke the program RyEnv32_ND.exe under the directory Tools\Envelop to perform the envelope
encryption function. As the name indicates, envelope encryption adds an envelope to the user’s designated files to
protect them. The envelope will call the dongle. When users execute the program protected by the envelope, the
protected program will automatically call the ROCKEY4ND and decide whether to allow the program to continue
according to the results of the call. The envelope program directly encrypts the compiled files. The advantage of
envelope encryption is that it is very easy and quick to implement and the source code does not need to be modified.
The envelope method is the ideal choice if there is no time for learning the API method or if the source code is lost or
unavailable. The disadvantage is that an envelope program uses a rule based encryption method, and rule based
encryption methods are not as strong as methods that use an encryption key. Also, envelope encryption cannot
support script languages that cannot be compiled, such as VBA.

For API encryption developers need to choose the appropriate language interface according to their programming
language to access the dongle. API encryption was designed to be flexible; so you can make full use of the
encryption functions of ROCKEY4ND. Developers can decide where and how to encrypt their software. API
encryption is more secure than envelope encryption and especially so when the internal algorithm function of
ROCKEY4ND is utilized. But API encryption must work with the original program and it can take the developer
more time to become familiar with the API.

Chapter 2 ROCKEY4ND Hardware Features

2.1 ROCKEY4ND Internal Structure

At the core of ROCKEY4ND is a specialized CPU with a USB interface. It supports the USB 1.0 standard and is
compatible with USB 2.0 standard. In addition to the CPU is a non-volatile memory chip that can save your data in
the event of a power loss. The ROCKEY4ND functions are divided into User, Module and Algorithm zones. The
developer may store important information (such as an application serial number) inside the dongle. You can write to
the ROCKEY4ND dongle as many as 100,000 times — there is no appreciable limit on the numbers of reads.

The ROCKEY4ND chip supports special functions for random number generation, seed code generation and user
defined algorithm interpretation.

2.2 ROCKEY4ND Hardware Interface

ROCKEY4ND USB supports USB Standard 1.0. At the most 16 USB dongles can attach to a computer with a USB
extension HUB. The LED of ROCKEY4ND USB indicates the status of the dongle. (In a normal state after the
dongle is attached to the computer the LED will be on all the time. If the LED blinks it indicates that the driver is not
installed. Other LED responses indicate hardware failure.)

Note: ROCKEY4ND is a plug and play USB device. To unplug a ROCKEY4ND while writing/reading, the
dongle may cause crashes to the operating system in some instances.

Chapter 3 Installing ROCKEY4ND SDK

You will find the program Setup.exe under the root directory of the CD-ROM included in the Software Developer’s
Kit (SDK). The contents of the CD-ROM are not zipped. Experienced developers may simply copy all necessary
content to the computer.

3.1 Content of the CD-ROM

The content of the CD-ROM consists of two parts:

Tools under the directory Tools. Some documents on how to use these
tools are provides in the corresponding folder.

APIs for different programming languages

3.2 Installing the SDK

Below we will discuss how to install and use the development package.

Step 1.

FEITIAN provides a Setup.exe installation wizard program on the CD-ROM. You may select the components you
need. The installation of the drivers is also integrated in this wizard. Double click the setup.exe file from the root
directory of the ROCKEY4ND CD-ROM. You will see the first screen of the Setup Wizard pictured below (Figure
3.1). Select language in the first step.

Langnage selection E|

gﬁ! Plzase select a language to use during the

installakion.

[O] [Cancel]
Figure 3.1

Step 2.

Close other application to avoid the need of rebooting the system.

10

5! ROCEEYARD SDE ¥1.15 Setup =X

Welcome to the ROCKEYAND SDK
¥1.15 Setup Wizard

This wizard will guide you through the installation of
ROCKEY4MD SDK V1,15,

It is recommended that vou close all other applications
befaore starting Setup, This will allow Setup to update certain
syskem Files without rebooking vour computer.,

Click Mesxt to continue,

Mext = | [Cancel

Figure 3.2
Step 3.

View the software release agreement.

i) ROCEEYARD SDE ¥1.15 Setup

License Agreement .:-_-' /
Flease review the license terms before installing ROCKEY4MD SDK g °
Vi.15,

Press Page Down to see the rest of the agreement,

Feitian Technologies Co., Lid
Software Developer’s Agreement

Al Praducts of Feitian Technologies Led, (Feitian) including, but not limited to,
evaluation copies, diskettes, CO-ROMs, hardware and documentation, and all Future
orders, are subject to the terms of this Agreement, IF vou do not agree with the
terms herein, please return the evaluation package to us, postage and insurance

prepaid, within seven days of their receipt, and we will reimburse vou the cost of the w
Prodiirt lree Frrinht and reaznnable handlinn chavnes

If wou accept the terms of the agreement, click I Agree to continue, ¥ou must accepk the
agreement ta install ROCKEY4MD SOK 1,15,

[« Back, ” I Agree] [Cancel

Figure 3.3
Step 4.

Figure 3.4 show the type of installation. Please select the content you want to install.

11

5! ROCEEY4ND SDE ¥1.15 Setup H=3

Choose Components —
Chioose which Features of ROCKEY4MD 30K 1,15 yvou wank ko b °
inskall,

Zheck the components you want to install and uncheck the components vou don't want to
inskall, Click Mext ko continue,

Selectthe type of nstall | |
Or, select the optional ROCKEY4MD AP Library
components you wish to ROCKEY4ND API Head File 1
inskall;
ROCKEY4MD Help Documents
ROCKEY4MD IDE Tools
ROCKEY4MD Samples —
ROCKEY4MD Linuz: SDK 3
Mol e o= =ttt amam = al o = —
Drescription
Space required: 4.0MB ROCKEV4ND &bit SDE

[« Back, ” Mext =] [Cancel

Figure 3.4
Step 5.

Select the path to install the SDK.

iil5 ROCEEY4ND SDE ¥l.15 Setup

Choose Install Location —
Chioose the Folder in which to install ROCKEY4MD SDK W15, y °

Setup will install ROCKEY4ND SOK ¥1.15 in the Follmwing Folder, Toinstallin a different. Folder,
click Browse and select another Folder, Click Mext ko continue,

Destination Folder

|C:'|,Pru:ugram FilestFeitianROCKEY 4D | Browse, .,

Space required; 4.0ME
Space available: 5.5G8

[< Back “ Mext = | [Canel

Figure 3.5
Step 6.

Finish installing the SDK.

6! ROCEET4RD SDE ¥1.15 Setup =13

Completing the ROCKEYA4ND SDK
V1.15 Setup Wizard

ROCKEY4MD SOK 41,15 has been installed on wour
compuker,

Click Finish to clase this wizard,

Figure 3.6

3.3 Uninstalling the Development Package
You may use Add or Remove Programs from the Windows Control Panel or select “FEITIAN” and then “Uninstall”

from the Windows Start menu to uninstall the installed components.

13

Chapter 4 Concepts for Developers

This chapter covers the basic concepts and functions of the ROCKEY4ND software protection system. All ROCKEY
users should read this chapter carefully to familiarize themselves with ROCKEY .

4.1 Passwords

When developers purchase ROCKEY they will get 4 16-bit passwords. The first two are Basic passwords (first grade
passwords); the last two are Advanced passwords (second grade passwords). The 4 passwords for the demo dongles
in the SDK are: P1: C44C, P2: C8F8, P3: 0799, P4: C43B. The passwords are “burned” into the hardware so that
neither the user nor the manufacturer may change them. The developers must input the 4 passwords correctly to have
full access to the dongles. The developer should set any reference to the Advanced password set to zero in the
application program that is delivered to the end user — you should never reveal the Advanced passwords to the end
user in any form. The Basic passwords allow the end users to access all necessary ROCKEY functions. We will
discuss when one should input the Basic passwords, and when both Basic and Advanced passwords are required in
the chapters that follow.

4.2 Customer Code

The Customer Code is five to seven characters in length and corresponds to a unique customer password set. You
may use the Customer Code for reordering ROCKEY4ND to be sure that all of the units in your inventory are
consistent.

4.3 Hardware ID

FEITIAN will burn a globally unique Hardware Identification (HID) number into each ROCKEY4ND dongle. The
HID cannot be changed. You may use the HID to positively identify an individual ROCKEY4ND.

The HID is readable with the Basic passwords. It is impossible to write HID even if you have the advanced
passwords.

4.4 User Data Zone

The User Data Zone (UDZ) is a memory space that the developer can use to store data needed by the software
protection system. Users can read from and write to this space at any time. The total UDZ is 1000 bytes.

The UDZ is divided into 2 parts.

The low part (0-499 bytes): Users with any level of passwords have full permission (read/write). The high part
(500-999 bytes): Users with basic passwords (password land password 2) can only read the UDZ. Users with
advanced password (password 3 and password 4) have full permission (read/write).

4.5 Module Zone

The Module Zone was designed for multi-module encryption. It may be used to store module specific data for
Envelope encryption and/or API calls.

14

A ROCKEY4ND module is a 16-bit protected memory space. There are 64 “modules” in each ROCKEY4ND dongle,
S0 as many as 64 application modules may be protected with a single ROCKEY4ND dongle. The developer may
write data into the ROCKEY4ND modules and then use that data, along with ROCKEY4ND functions, to create
powerful and flexible software protection systems. If the content of the module is not “0” you can use the module; if
it is “0” you cannot use the module. You may determine if a module is useable by analyzing the attributes of the
module. The exact content can only be determined algorithmically.

ROCKEY4ND modules cannot be read and it can only be written with Advanced passwords.

4.6 Module Attributes

There are two attributes associated with each ROCKEY4ND module: “Zero Value” attribute and “Decrement”
attribute. A 16-bit protected memory space stores an attribute of the module. The value stored in the “Zero Value”
attribute indicates if the value in the associated module is “0” or not “0”. “1” indicates not “0” and that the module is
usable; “0” indicates “0” and that the module is not usable. The “Decrement” attribute indicates if the value stored in
the associated module can be decreased. “1” indicates it can be decreased. “0” indicates it cannot be decreased.

The “Zero Value” attribute can be read with the Basic passwords and cannot be written with Advanced passwords.

The “Decrement” attribute can be read with the Basic passwords and can be written with the Advanced passwords.

4.7 User Algorithm Zone

The User Algorithm Zone (UAZ) is a user-defined area for instruction storage. The number of instructions that may
be stored in the UAZ varies according to the ROCKEY4ND model. ROCKEY4ND supports a maximum of 128
instructions. (Please refer to Chapter 8 ROCKEY4ND Hardware Algorithms.)

The User Algorithm Zone (UAZ) cannot be read and may only be written with Advanced passwords.

4.8 User ID

The User ID is a 32-bit memory allocation that may be used to store an application serial number or other
identification information.

It may be read with the Basic passwords and written with the Advanced passwords.

4.9 Random Number

ROCKEY4ND can generate a true random number from its hardware. The random number can be used to prevent
tracing or used in hardware algorithms.

4.10 Seed and Return Values

ROCKEY4ND contains a proprietary algorithm that will generate four 16-bit return values from input of a 32-bit
seed code and the Basic/Advanced passwords. ROCKEY dongles with the same passwords should return the same
values if the seed codes are the same. The return values will be different for ROCKEY dongles with different
Basic/Advanced passwords.

15

Chapter 5 ROCKEY4ND Editor

5.1 Brief Introduction

You may use the ROCKEY4ND Editor to edit data stored in ROCKEY4ND, test its functions or write in batch. The
Editor is a convenient tool for learning to use ROCKEY4ND and its edit operations. To run the Editor, select
“Editor” under “Tools”. The ROCKEY4ND Editor interface is organized into five parts: Tool Bar & Pull down
Menu, Status Bar, Device Selector, Operation Status Log and Operation Main Window. See Figure 5.1.

\vie ROCKEY4ND_Editor 1.2 - Rockey4ND_1
File Edit Wiew Help

DPEH IR RAR BB A

|»

= J Local donglefwiridF) Input Passward Edit Test Self Test
& (0x08fb1653)

User Data Zone User Algorithms Zone
() User Memary 1 () User Memary 2
[Read] [Wwiite 0o D L
0000 o0 00 00 00 00 00 00 oo e b D
0008 00 00 00 00 00 00 00 0o 02 D
0010 00 00 00 00 0O OO0 00 0o
0018 00 00 00 00 00 00 00 oo 02 D
0020 00 00 00 00 00 00 00 oo
0028 00 00 00 00 OO OO 00 00 04 D
0030 00 00 00 00 00 OO0 00 oo
0038 00 00 00 00 00 00 00 oo 05 D
_J Operating status 0040 00 00 00 OO0 00 OO 00 OO0
" 16:13:45 Read user memonSucce 004500 00 00 00 00 00 00 00 0 D
- 0050 00 00 00 00 00 00 00 oo
" 16:12:46 Flead user memanySucce: 0052 00 00 00 00 00 00 00 00 i D
O0&0 00 00 00 00 0O OO0 00 0o v
0068 00 00 00 00 00 00 00 oo w [7] Auto S/
Module Zone Uszer I Zone

>

b |OCwme] o |0 wm]

oo |0 wie | 030 |OI[wite]

20 |0 wie | o O wie] UserlD [0

o0 J0Cwme] 0Ol]

o [0 O wiee] 120 |0 wie |

sf J0[en] B0 0 =]

o0 O wite | 10 [0 wie |

o7 [0 O wie] 10 O wie | »

B atch Operation [User 10 Single Operation |

T G L
< > |

Figure 5.1
1. Tool Bar & Pull down Menu - This is the very topmost section of the screen. The typical Windows functions

can be invoked from the icons or pull-down menus, such as print, save and refresh. Shortcut keys and icons are
also offered. See Figure 5.2 and 5.3.

16

2.

3.

Mew ChrH+I

Cpen... ChrlH-
Save Chr+5
Save hg,,,

Log file configuration. ., Ctrl+P
Print... Chr+P 4

Frint Preview
Print Setup...

Exit:

Figure 5.2 Figure 5.3

DA HSBRER B G @

Status Bar -The Status Bar is at the bottom of the screen. The Status Bar message is for the dongle selected in

the “Device Selector” (See below) portion of the screen. Status messages are: Read, Write and Ready. See
Figure 5.4.

‘s ROCKEY4ND_Editor 1.2 - Rockey4ND._1

File Edit Wiew Help

2 | 3 =
: = i = | ® \ﬂ % LI_LI I_ll Iﬁ
= g Lozal donglefwinF) Input Pazsword Edit Test | Self Test =
& (0%03101653)
Self-test
Testing input Testing result Error code

User Memary 1
User Memary 2
User ID
Randam
Seed

Test Module
Test calc. 1

Test cale. 2
Test cale. 3
Iritilize: dongle

'd Operating status

Settings Operation
Status Found 1 ROCKEY4MD, testing 1 [0x08fb1653)...

Status Bar

0D]

Figure 5.4

Device Selector - This is the upper left portion of the screen and shows the current OS version and
ROCKEY4ND dongles that are attached to the computer. See Figure 5.5.

17

ROCKEY4MD_Editor 1.2 - Rockey4MD_1

File Edit Yiew Help

DPH SR RR BB D

= :J Local dangle(winx<F]

Input Password | Edit |

Test

6 (0x08f1653)

Hardware ID

4 Operatim
" 16:19:11 Fead user memanSucce:
" 16:19:12 Fiead user memonySucce:
W 161314 Wiite user memonySucces
" 16:19:16 Flead user memanySucce:
W 1B:20:21 Set module zoneSuccess
J 16:20:32 Read user memonSucce

Uzer Data Zone
(#) Uszer Memory 1

() User Memary 2

User Algarithms Zone

I Fead

l

0000 oo oo o0 00 oo oo
0008 00 oo 00 00 00 oo
0010 00 00 00 00 00 o0

012 00 00 00 00 00 00

020 00 00 00 00 00 oo
025 00 0o 00 00 00 oo
030 00 oo 00 00 00 oo

{003z 00 00 00 00 OO0 00

Oo40 00 oo oo o0 00 oo
0048 00 00 00 00 0O OO0
0050 00 00 00 00 0O OO0
0058 00 oo oo o0 00 oo
0060 00 o0 oo o0 00 oo
0068 00 00 00 o0 00 oo

oo
oo
an
uli]
uli]
uli]
uli]
il
oo
oo
oo
an
uli]

Batch Operation [User 0]

() User ID + O UserID -
() Mo Change) Use Time D

it}
m
02
03
04
05
&
o7

User ID Zone

UserlD | 117111111
Fead

Single Operation

E atch Wiite

Read Wiite

|»

4. Operation Status - The time, results and error prompt of the previous operations will display here. This section is
the lower left portion of the screen. See Figure 5.6.

18

‘i ROCKEY4ND._Editor 1.2 - Rockey4ND_1

File Edit Yiew Help

D2 HLB AR XEE

= _J Lacal dangle[wire<P)
6 (0x08H01653)

(#) Uszer Memory 1

Test Self Test

User Algarithms Zone

() User Memary 2

[Read | [‘wiike 00 [A=taB ~
00 00 00 00 00 s O fac (]
b0 00 00 00 0b @ o6
00 00 00 00 00 s O
00 00 00 00 00 04 O
e T i o
\/18:19:12HeadusermamurﬁSucce gggg gg gg gg) iy D
" 1E:19:14 Wiite user memorySucces 0060 00 07 D v
VA i i]2 .
 16:20:32 Headusermeﬁ?ﬂ% - Current operatlon oot 1D Zone
e status
oo
20 |1 wite | W0 L wite] UserlD [11111111
o 0] 60]
who |OCwee] 1200 O we] _
05 0o D 12 o D
w0 O(wme] 1 |0 wme)
wo 0(wme] sl 0]

Batch Operation [User 0]

() User ID + O UserID -
() Mo Change) Use Time D

Single Operation

Batch 'wiite Read Wiite

Figure 5.6

|»

5. Operation Main Window - The Operation Main Window has five selection tabs: Password, Edit, Test, Self
Test and Batch Write. Each tab corresponds to a screen and a function.

Template files (.rki) can be opened by dragging and dropping the template file to the open Editor window. It can
also be opened from the file pull down menu in the Editor or by clicking the file from Explorer. You may print
preview the template file and print it out. You may use the Editor without a ROCKEY4ND dongle attached to the
computer and save the results to a template file. The template file can later be used for a “Write” or “Batch
Write” to a ROCKEY4ND dongle(s). The template file may be updated with the Editor while dongles are

attached. A progress bar will display all your operation progress and you may stop your operations at any time.

Notes:

All numbers are input and displayed in hexadecimal with the exception of the number of generated seed codes in

the test screen.

5.2 Operation

1. Input Password

You may enter the Basic and Advanced passwords as shown in Figure 5.7.

19

‘i ROCKEY4ND._Editor 1.2 - Rockey4ND_1
File Edit Yiew Help

DPH SR RR BB D

=2 ,J Local donglefeini<P) Input Passward Edit Test Self Test 1=
6 (0x08H01653)

Basic Pyl Basic P2

Adv. Py Adv. Pw2

[Auto-save pass

ok | [DEmo
4 Operating status
" 16:19:11 Fead user memanSucce:
" 16:19:12 Fiead user memonySucce:
W 161314 Wiite user memonySucces
" 16:19:16 Flead user memanySucce:
< > ~|
Figure 5.7

Make sure you enter the correct passwords. If the Basic passwords are incorrect Editor cannot find the dongle. If the
Basic passwords are correct, and the Advanced passwords are invalid, the Editor should find the dongle and allow
Read functions, but it will not allow Write functions.

If you click “DEMO” button, you may perform any operations on DEMO dongles. The 4 passwords for DEMO
dongles are: P1: C44C, P2: C8F8, P3: 0799, P4: C43B.

The passwords will be saved automatically when you choose “Auto save password”. This function avoids future
password entry errors.

If the entered password information corresponds with the attached ROCKEY4ND dongle, selecting the “OK” or
“Demo” button will take you to the “Edit” screen. The system will automatically begin to search for attached
dongles.

Note:

You may edit, save, open and print template files without inputting the passwords. However, you cannot operate the
dongle without at least the Basic passwords. Entering the Basic passwords will allow you to both edit template files
and perform Read operations on the corresponding attached dongle.

2. Edit ROCKEY

20

The ROCKEY Hardware ID (HID) is displayed for all found dongles. The HID is globally unique and cannot be
changed. See Figure 5.8:

\vie ROCKEY4ND_Editor 1.2 - Rockey4hD_1
File Edit View Help

DPH SR RARX BB D

= ' Local danglelwiri<F) Input Passwaord Edit Test Self Test
& (0402Mb1653) Start
User Data Zane User Algarithms Zane
(%) User Memary 1 () User Memary 2
[Fiead] [wiite 00 | A=t -
= 01 |A=teC O]
02 |B=B+C (£]

[»

oooo on oo oo o0 00 00 00 o0
o008 o0 oo oo o0 00 00 00 o0

0010 oo oo
0o01s o0 oo
0020 00 i 1 J
00z2g oo oo
D030 00 & O
003g oo —
05 |48
_J Operating status o040 00 0 —
" 16:19:11 Fead user memanySucce: ggég gg - U6 E]
" 16:19:12 Read user memanSucce: 0058 0g
W TE19:14 Wiite user memorySucees ooen o 07 D ~

" 16:19:16 Fiead user memanySucce Oo0gE 01 - -
" 1E:20:21 Set module zoneSuccess Pl w
W 16:20:3
R Module Zone Uszer 1D Zane
Write 6 to w0 |0
module 0 oo |0 mo |0

i A
0 1]
2o |0 wie | 1o |0 wie] UserlD 11111111
wf OCwm]) vl OCwm]
T TR Y e—r—
oo JO(wie) o[]O[i)
wfo JO(wie) [O i)
@l JO(we) b JO(whe) v
Eatch Operation [User 10 Single Operation
&) User ID + O UserID - [ﬁ -
i Read W
() Na Change) Use Time D fetshialis = L o
< > =
Figure 5.8

Here you may edit the specified ROCKEY. There are four components to the Edit screen: User Data Zone (UDZ),
Module Zone, User Algorithm Zone (UAZ) and the User ID Zone (U1Z).

User Data Zone (UDZ) — The UDZ is a user defined memory space. Data may be entered here in hexadecimal or
ASCII text in the field provided. Click the “Read” button to read data from the UDZ and “Write” to write to the UDZ.
If you click the Read or Write button a progress bar will appear. After the operations are finished the results will be
displayed in the Operation Status section. See Figure 5.9.

Module Zone - This part of the screen is used to update the values and decrement attributes of the ROCKEY4ND
modules. To add new values to a module simply enter the new value in the field of the module, and click “Write”.
The Decrement attribute can likewise be altered. (All 64 ROCKEY4ND modules are displayed here, labeled 0 to F in
hexadecimal.)

User Algorithm Zone (UAZ) — User defined algorithms may be written here. The algorithms consist of operands
and operators, such as A=A+B (Please refer to Chapter 8 ROCKEY4ND Hardware Algorithms). The function of the
small button to the right of each instruction is to set the Start/End attribute. An algorithm will begin with an
instruction marked “S” and end with one marked “E”. Single instruction algorithms will have the attribute value of
“SE”. A null value attribute will be assigned to any instruction that is not explicitly the start or end of an algorithm.
The “Auto S/E” option will automatically assign an attribute of “S” to the first instruction of a string and “E” to the

21

last instruction
— and a null attribute to all attributes between the start and end of the algorithm or “SE” if there is only one
instruction in the string. Click the “Write” button to write the instructions to the UAZ in the ROCKEY4ND dongle.
See Figure 5.9.

User ID Zone (U1Z) - User identification information may be read from or written to the U1Z of the
ROCKEY4ND dongle in hexadecimal. See Figure 5.9.

\vie ROCKEY4ND_Editor 1.2 - Rockey4ND_1
File Edit Wiew Help

DPEH IR RAR BB A

= J Lacal donglefwirs<P) Input Password Test Self Test UAZ =l
& (0x08fb1653)

User Data User Algorithms Zone

) User Memary 2

Wirite 00 |A=tef ~
0000 00 0o 4 U | e 4
ooos on oo 4
0010 00 i 0z B8+
0018 00 00 00 00 00 00 00 oo 02 D
0020 00 00 00 00 00 00 00 oo
0028 00 oo oo o0 00 00 00 o0 04 D
0030 00 o0 oo 00 00 00 00 o0
0038 00 o0 oo 00 00 00 00 o0 =
3 Operating status 0040 00 00 00 00 00 00 00 00 o) =8
" 16:19:11 Read user memanySucce: o4s 00 00 00 00 00 00 00 00 08 D
e 0050 00 o0 oo 00 00 00 00 o0
W 161512 FiefadusermamorySucce 0052 00 00 00 00 00 00 00 00 i D
W 16:19:14 Wiite user memorySucces 0060 00 OO0 00 00 OO0 OO0 00 00 >
" 161316 Read user memonSucce 0068 00 00 00 00 00 OO0 00 oo - [7] Auto S/

W 1E:20:21 Set module zoneSuccess

" 16:20:32 Fiead user memanySucce:
Module Zone Uszer I Zone

S w [O]

o[J0Cwe] w0)0]
Module 02

0O wie | 1w O wie UserlD [11111171

s O0me] |0l

moETR ST | err—

oo |O(wme] 120 |O(wie)

w0 |O(Wae] b |O(W)

wlo JOCEE) b JOCwm) v

B atch Operation [User 10 Single Operation

@) User D + O UserD - -

Read il

() No Change) Use Time D —

< > hd

Figure 5.9
3. Test ROCKEY

There are five components to the Test screen: User Data Zone (UDZ), Calculation Zone, User ID Zone (UlZ),
Module Attribute Zone and the Seed Calculation Zone. See Figure 5.10.

22

‘i ROCKEY4ND._Editor 1.2 - Rockey4ND_1

File Edit Yiew Help

D2a

2D R XBGE M@

= _J Lacal danglefwin<P) Input Password Edit Test Self Test 1=
6 (0x08H01653)
User Memary User Algarithm Zone
(3) User Memary 1) User Memary 2
[Read] [Calculate]
0000 o0 00 00 00 00 00 00 oo e Parameters
0008 00 Ak AA AR AL AA AA A2
0010 &4 Ak AX AR A2 A3 A3 00 ®Calel OCake2 OCak3
0018 00 00 00 00 00 OO0 00 oo
0020 00 00 00 00 00 00 00 0o Uz addr. |0 Mod# |0
0028 00 00 00 00 0O 0O 00 0o
0030 00 00 00 00 00 00 00 oo A 0 B 0
; 0038 00 00 00 00 00 00 00 oo
d Operating status 0040 00 00 00 00 00 00 00 OO C 0 D g
" 16:19:11 Fead user memanSucce: o048 00 oo oo o0 00 00 00 o0
" 161312 Riead user memonySucce 0050 00 o0 oo 00 00 00 00 o0 Riesults
W 161314 Wiite user memonySucces EEEg00 00 00 00 00 00 00 00 A] B 0
O0&0 00 00 00 00 00 OO0 00 oo
" 16:19:16 Flead user memanySucce: 006S 00 00 00 OO0 00 00 OO0 00 b
W 1B:20:21 Set module zoneSuccess c 0 D 0
J 16:20:32 Read user memonSucce
" 16:21:22 Fead user memanySucce Module Zone User ID
" 16:21:258 Fiead user memanySucce: F
W 1E:21:38 Wiite algorithmS uccessfu ez] |: fiead
W TE:21:43 Wiite user memorySucces 11111111
" 16:21:45 Read user memanySucce: 00 | INvA 05 | INvA ”~ User ID
" 16:21:48 Read user IDSuccesshull,
01 | INyE 09 | INVa
" 16:21:50 Fiead user IDS uccessfully Seed
" 16:21:52 wiite user IDSuccesshully 02 |INwE 10 |INVA Calculate
" 1E:21:55 Flead user IDS uccesshully 03 [INva 11 [Ny S
04 | INE 12 | INva Resul
05 | INE 13 | INva
Batch Generate Seed]
06 |INWa 14 |INVA Nurrber [100
07 |Inve 15 [¥ Fie |C\TestRandom Seed| .. |
< > ~|

Figure 5.10
User Data Zone —The UDZ is a user defined memory space. Data may be displayed in hexadecimal form, or as
ASCII text. Click the “Read” button to read data from the UDZ. You may view hexadecimal data or ASCII text here.

Calculation Zone — Be sure that you are familiar with the calculation functions before using the Calculation Zone.
First select the calculation you would like to test (For Calcl and Calc3 a “Module” entry box will appear. For Calc2 a
“Seed Code” box will appear.). Then input the start address of your algorithm stored in the UAZ. The start address is
where the instruction is marked with “S” or “SE”. Enter hexadecimal input values to the parameter A, B, C and D.
Enter the module number or seed code and click the “Calculate” button. The results of the operation will be written
to the parameters listed in the “Results” section of the Calculation Zone.

User ID Zone (UlZ) — Click the “Read” button to read the user defined ID from the UIZ of the ROCKEY4ND
dongle. UIZ is 32 bits in length.

Module Attribute Zone — This zone indicates the status of the Zero Value and Decrement attributes of the
ROCKEY4ND modules. Click the “Read Module Attributes” button to update this portion of the Test screen. “N/A”
means that the Zero Value attribute is “0”. “Valid” means the Zero Value attribute is not “0”. If the “Dec” button is
grayed out the module cannot be decremented. If it is to be decremented, clicking the “Dec” button will reduce the
value stored in the module by “1”.

Seed Calculation Zone — There are two small sections to the Seed Calculation Zone. The top section will display
four calculated seed results for any entered seed code. Enter a decimal number in the “Number Generate” field in the

23

bottom section, and that same number of random seed codes and corresponding results will be written to a text file
defined in the “File” field. The default file is C:\seed.txt. See Figure 5.11.

& Random_Seed - Notepad
File Edit Format Wiew Help

5c9bh7dla 78e7 801 Sdca Sodd ~
Bhechblda 4dod Fe77 0306 b70c
eccO69T A863 2dle aofo 066h
c202aeB590 eaea 3e33 4Thd 6358
2akhaslen de9s 4de? a3fz B6e7
hz2f2do7o 2817 504d 4726 fode
C1l0lesEc 4712 7fed fo99 725f
e726049d c75e 142d fa4hb <cl19
g222fend 2023 h99s 9605 8fdc
oedalics cBfc aB4d hodbh ho7e
80c0a43b 0457 8ef3 5f4e 3223
hofcdes? C076 2331 f7dbh edcS
BROL750R C9ch Bldd 3eeS Fhac
bcfodos2 e%ac 3642 Bhae A0CA
CEOEa9E0 138a 6082 cefd 763e
367550F0 003¢c 769d as90 e0cl
hafod?7s0 a48d 0708 24e7 alla
Obdazccs 38%9d 9019 8984 6a70
Gfaesd3d 9o3c F61f dass Scel
7ehe9c3s 4faz 3653 cach ass7y
2171535ac dbdz 301 Zhée &0ea
5796761d elas cdez cecd 88e0
gfcfadds 5769 5f06 661 Sdee
Ofde30d9 2813 aSc? 03ch o415
7hbhh952e 7acd 2b04 a009 Thar?
f2321acl aa7d 2bhb7? 1374 Oee?
5393616 6c26 98hd Sdfc dz2fh
calBedsd h9hs afz24 ed489 afef
377751Fa 4c40 4327 2aas ebol
S3d7bf 56 5la8 9c9e S5a7d 93dc
5R957108 2d3c sbcf 097e 20f5
e0l1f07oe bh225 5a67 h3ed ef3d
3c7chafz ddch 7eaf &7fa adéc
c707edsa 155c hB8ed acsft ha43
Obd4b28c2 03a4 dooa dzbc aa3? 2

Figure 5.11
4. Self Test

Self test all ROCKEY dongles attached to the computer. See Figure 5.12.

24

‘i ROCKEY4ND._Editor 1.2 - Rockey4ND_1

File Edit Yiew Help

% | LY L=
: = i = | (7 |ﬂ % Ll_Ll I_ll Iﬂ
= i Local donglefwin<P) Input Password E dit Test | Self Test =]
6 (0x08H01653)
Selftest
Testing input Testing result Errar code

User Mernory 1
User Memory 2
User 1D
Random

Seed

Test Module
Test cale. 1

- Test cale. 2
' Operating status -
Initialize: dongle

Settings Operation
Status Found 1 ROCKEY4MD, testing 1 (0x08fb1653)...

[]

Figure 5.12
The Self Test screen will test all ROCKEY dongles automatically and write the Hardware 1D (HID) to a file named
“log.txt” in the current directory. (Please refer to Section Log File and File Setting)

Note:

This test is like a “Format” command in that it will delete any data or parameters stored in the dongle. It would be
best to run the Self Test upon receipt of the dongle or if there is a significant problem with the dongle.

5. Batch Write

There are six components to the Batch Write screen: User Data Zone (UDZ), Module Zone, User Algorithm Zone
(UAZ), User ID Zone (U1Z), Single Operation Zone and the Write All Zone. See Figure 5.13.

25

‘i ROCKEY4ND._Editor 1.2 - Rockey4ND_1
File Edit Yiew Help

DPH SR RR BB D

= _J Lacal danglefwin<P) Input Password Edit Test Self Test 1=
6 (0x08H01653)
User Data Zone User Algarithms Zone
(#) Uszer Memory 1 () User Memary 2
[Read | [‘wiie 00 |A=eB a
0000 o0 oo o0 00 00 00 00 00 L’ ol ~=+-C D
O00g 00 00 00 00 00 00 00 00 .
00i0 o0 oo oo o0 00 00 00 o0 2 |k
Oo0ls o0 oo oo o0 00 00 00 o0 03 E]
0020 00 o0 oo o0 00 00 00 o0
0028 00 o0 oo o0 00 00 00 o0 04 D
0030 00 o0 o0 00 00 00 00 o0
0035 00 o0 00 00 00 00 00 oo iy
7 Operating status 0040 00 00 00 00 00 00 00 00 Lo) ~=B
" 16:19:11 Fead user memanSucce: 004800 00 00 00 0O 00 Q0 00 & D
0050 00 00 00 00 00 00 00 00
\/18.19.12HefadusermamurySucce OOSS 00 0o 00 00 0o oo oo oo i D
j18:19:14W'nteusermemowSucce: 0060 00 OO0 00 00 OO0 OO0 00 00 v
1E:19:16 Read user memarySucce: 0068 00 00 00 00 00 00 00 oo s .
v
W 1B:20:21 Set module zoneSuccess [l EE
J 16:20:32 Read user memonSucce
Module Zone User ID Zone
nf 0] © |0)
0 |0 wie | o O wie | UserlD [11111111
wo |OCm] o Ol
e I
w0 O] w0)
Batch X2 00T w0 O]
S | CO [s B A o [| e
atch Operation [Uzer 10 Single Operation
User ID + O UserID -
B atich Writ Read Wirite
() Mo Change) Use Time D w ;] f
< > ~|
Figure 5.13

User Data Zone (UDZ) — See the previous introduction. Module Zone — See the previous introduction. User
Algorithm Zone (UAZ) — See the previous introduction. User ID Zone (UlZ) - See the previous introduction.
Single Operation Zone — Select the “Read” button to read the contents of the ROCKEY dongle to memory. Select
the Write button to write the contents of memory to ROCKEY. Write All Zone — This section will change the UIDs
of all of the ROCKEY4ND dongles displayed inthe Device Selector section. Enter the starting UID in the “User ID”
field and then click one of the“User ID” setting buttons (The setting buttons for the UID Zone are described below.)
Then click“Write All” to update the attached dongles:

User ID +: This button will write the value entered in the “User ID” field to the top most dongle in the Device
Selector section, and increase that value by one for the subsequent dongle. It will continue to increase by “1”
and write the new value to each dongle listed in the Device Selector section. For example, if the number
“123"” were entered into the User ID field and there were three dongles in the Device Selector section -
selecting “User ID +” and clicking “Write All” would write “123” to the top most dongle. The next dongle
would have a UID of “124” and the last a UID of “125”.

User ID —: This has the same effect as the “User ID +” field, except the UID is decreased
instead of increased.

Use Time ID: This button will alter all of the UIDs by a value taken from the system clock.

No Change: The UID entered into the “User ID” field will be written to all of the dongles in
the Device Selector section.

26

5.3 Template Storage

You may save the template on the disk or print out for backup. See Figure 5.14.

& ROCKEY4ND_Editor 1.2 - Rockey4ND_1

= :J Local donglefwire<P] Frint... Mext Page

& (0x08fb1653)

ROCEETAND data template
User Memorwl:
00 00 00 00 o
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 00 00 00 00
00 OO0 00 00 OO0 00 00 00 00 00 00

00 OO0 OO0 00 OO OO 00 00 00 00 00
00 OO0 OO0 00 OO OO 00 00 00 00 00

oo o0 oo 00 0o 00 o0 00 oo
oo 00 oo 00 oo
oo o0 oo 00 oo
oo o0 oo 00 oo
oo o0 oo 00 oo
oo o0 oo 00 oo
o0 00 oo
00 oo

CJ Operating status
" 1619:11 Read user memanySucce:
" 161912 Fead user memanySucce:
W 1619:14 Wiite user memorySucces
" 161316 Read user memonSucce
W 1E:20:21 Set module zoneSuccess
" 16:20:32 Fiead user memonySucce:
" 16:21:22 Read user memonSucce
" 1E:21:28 Fead user memanySucce
W 1B:21:38 Wiite algorithmS uccesshu
J 16:21:43 White user memomnSucce:
" 16:21:45 Flead user memanySucce
" 16:21:45 Fiead user IDS uccesshully
" 16:21:50 Fead user IDS uccesshull,
W 16:21:52 Wiite user IDSuccessfully
" 16:21:55 Read user IDSuccesshully
" 16:22:34 Batch gererate seedSucy

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Uzer Memory 2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 0O 00 OO 00 00 OO0 00 00 OO0 00 00
0o 0o 00 o0 00 00 00 00 0O 0O OO0 00 00 00 00 00 o0 00 OO OO OO0 0O 00 00 OO0 OO0 00 00 00 oo
0o 0o 00 o0 00 00 00 00 0O 0O OO0 00 00 00 00 00 o0 00 OO OO OO0 0O 00 00 OO0 OO0 00 00 00 oo
0o 0o 00 o0 00 00 00 00 0O 0O OO0 00 00 00 00 00 o0 00 OO OO OO0 0O 00 00 OO0 OO0 00 00 00 oo
0o 0o 00 o0 00 00 00 00 0O 0O OO0 00 00 00 00 00 o0 00 OO OO OO0 0O 00 00 OO0 OO0 00 00 00 oo
0o 0o 00 o0 00 00 00 00 0O 0O OO0 00 00 00 00 00 o0 00 OO OO OO0 0O 00 00 OO0 OO0 00 00 00 oo
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO OO 00 00 00 00 00 00 o0 oo b

Page 1

Figure 5.14
5.4 Log File and File Setting

The ROCKEY4ND HID and User ID processed by the Self Test and Batch Write screens can be recorded in a log
file. This function is enabled by default. You can disable the Log Function in the “Log file configuration” screen that
is under the “File” pull-down menu. The log function may be disabled here and the log file name altered. Please see
Figure 5.15 and 5.16.

Log file confipuration

Log Status
() Enable Log Function () Dizable Log Function
File Mame
| [Emwsel
[1]:4] [Cancel l

Figure 5.15

27

&l log.tut - Motepad

Fle Edit Search Help

#ibate Time HardID iserID |
Oct 24 2008,11:09:58 508b5a74 19756316
Oct 24 2000,11:18:89 28857055 19750316
Oct 24 2000,11:18:20 28847073 19750316

Figure 5.16
5.5 Editor Update

You may click the “Help” button to check the update information of the editor. See Figure 5.17.

About ROCKEY4ND_Editor

ROCKE'Y4ND_Editor 1.2

Y
.-:h Copyright [C] 2002-2005 Feitian Technologies Co. Ltd.

Figure 5.17

Note: If our functions cannot meet all your requirements or you need some expanded functions, please contact
FEITIAN. We will do our best to perfect it in future versions.

28

Chapter 6 ROCKEY4ND Envelope Encryption

The ROCKEY4ND Envelope program may be used for direct encryption of Win32 Portable Executable (PE) files
(such as .exe, .dll or .arx). Envelope encryption is a good solution if you do not have the source code or the time to
use the API functions. Envelope encryption only works with 32-bit applications. For increased software protection it
is strongly suggested to use both the Envelope and APl implementations.

RyEnv32_ND.exe under the directory “TOOLS\ENVELOP” is the ROCKEY4ND Envelope encryption tool. Its main
interface is shown below in Figure 6.1.

T ROCKEYAND — ¥in98/2000/EP/2003 Enveloper w2.12

Single il encrypt] Multi-File encrypt |

Base password: [~ Demo Pwd
E Filename to encrypt:
| =

Filename after encryption;

Titlebar prompt message when Rockey not Found:

Content prampt message when Rockey not found:

[~ Use UstID

[Use madule

m [Use HID encryvption
¥ Background timing check Time interval(S: B M

| Welcome ko ROCKEY Enveloper Program Make

Figure 6.1

The “Single File Encrypt” program will be the most efficient protection method if only several files
need to be encrypted. If many PE files need to be protected use the “Multi-File Encrypt” program.

Note: Please back up your files before you encrypt them with the Envelopee program (RyEnv32_ND.exe). Envelope
encryption allows you to encrypt your files many times and in different ways with one ROCKEY. If you encrypt the
files with the evaluation default settings, software encrypted with one ROCKEY can work with another ROCKEY
with the same passwords.

If you plan to protect your software with both Envelope encryption and API encryption, please call the API first and
then encrypt the software with the Envelope program.

29

6.1 Single File Encryption

6.1.1 Encrypt with Default Settings

The Basic passwords (the first two passwords) must be entered into the fields shown in Figure 6.2 before you can
proceed. The passwords are masked with “*”. Select the file to be encrypted with the “browse” button or enter its
name in the “File name to encrypt:” field. Then enter the new encrypted file name and path into the “File name after

encrypt” field. You also can select the time interval to check if the ROCKEY4ND is attached. See Figure 6.2.

{7 ROCKEY4RD — Win98/2000/¥P/2003 Enveloper w2. 12

Single file encrypk] Multi-file encrypt |

ook kol

Base password:

Filename ko encrypt:

¥ Demao Pred

EoX

|D:'|,R0ckey4ND_Editnr.exe

Filename after encryption:

=

|D:'l,ND4_Rnckey4ND_Editor.exe

Titlebar prompt message when Rockey not Found:

|Err0r

Content prompt message when Rockey nat Found:

|Nc- ROCKEY Found

Time
[~ Use UstID interval
[~ Use module

[Use HID encryption

[¥ Background timing check Time interval{S):

Encryption succeeded

Note: The dialog box below will appear if you perform an encryption function without the correct ROCKEY4ND
dongle attached to the computer. When the correct ROCKEY is not found,The dialog box below will appear the

message “Cannot find ROCKEY4ND”

Figure 6.2

Click the “Make” button. A progress bar will appear and then the “File encryption succeeded” message will appear

Cannaot find ROCEEY 4D

Figure 6.3

after a successful encryption. See Figure 6.4.

30

iF ROCEEYARD — Win98/2000/XP/2003 Enveloper w2.12

Single file encrypk] Multi-file encrypt |

n Base passward: it i ¥ Demo Pwd
E Filename ko encrypt:
|D:'|,R0ckey4ND_Editnr.exe =

Filename after encryption:

|D:'l,ND4_Rnckey4ND_Editor.exe

Titlebar prompt message when Rockey not Found:

|Err0r

Content prompt message when Rockey nat Found:

|Nc- ROCKEY Found

[Use UsrID

[~ Use module

[Use HID encryption

v Background tiring check Time inkerval{S): = Ay

Successes

i Make :

Encryption succeeded

Figure 6.4
6.1.2 Encrypt with Module

If you choose “Use module encryption”, the system will not only check whether the dongle exists and whether the
passwords are valid, but also requires that the Zero Value attribute is not equal to “0”. To use module encryption you
must write one non-zero value in the corresponding module with the Editor Program and select “Use module
encryption” from the Envelope encryption program. Be sure to enter the appropriate module number. See Figure 6.5.

% ROCEEY4RD — ¥in98/2000/P/2003 Enveloper v2.12 =3

Single file encrypt] Multi-File encrypt |

E Base password: [o v Demo Ped

Filename ko encrvpt:

|D:'|,R0ckey4ND_Edit0r.exe =

Filename after encryption:

|D:'|,ND4_Rnckey4ND_Editor.exe

Titlebar prompt message when Rockey not Found:

|Err0r

Zontent prompk message wy k Found:

Module

|N-: ROCKEY Found

[~ Use UsrID

W Use madule

0
m | Use HID encryption
Iv Eiackground timing check Tirne intervallS): & Ay

Modho,{0-630

Encryption succesded Make

Figure 6.5

31

Note, please read the document for advanced function (set run-timelimitation with envelopeer) in
\Tools\Envelope

6.1.3 Encrypt with HID

If you choose “Use HID encryption” the HID of the attached ROCKEY4ND dongle will be copied to
the Envelope program when you click the “Make” button. Thereafter, the Envelope program (and thus the application)
will only run with that specific HID ROCKEY4ND dongle attached to the computer. See Figure 6.6.

“i7 ROCEEYAND — Win98/2000/XF/2003 Enveloper w2. 12

Single file encrypt] Mulki-File encrypt]

Base password: ik [ttt IV Demo Ped
Filenarme to encryvpk:
|D:'I,Rockey4ND_Editor.exe =

Filename after encryption:

|D:'|,ND4-_R0ckBy4ND_Edit0r.exe

Titlebar prompt message when Rockey not found:

|Err0r

Content prompt message when Rockey not Found:

|N-: ROCKEY Found

[Use UsrID

[Use module

v Background timing check Time inkerval(s): B M

Encryption succeeded Make

Figure 6.6
Note:

It is recommended that you use module encryption to enhace security. Combining that with HID protection will
improve security even further.

Using Envelopee encryption with default settings will allow end users to access two or more of your applications
with a single dongle. Most developers prefer that a dongle will allow end users to access only one specific
application. Use module encryption to create a one-to-one relationship between a dongle and an application. For
example, use module “0” to protect application A. Use module “1” to protect application B. In this way as many as
sixteen different applications may be tied to a dongle coded for only that specific application. Developers can achieve
similar results by ordering dongles with password sets specified for an application. But that approach is
administratively more difficult and not recommended.

6.1.4 Encrypted with UID

You may enter a range of User ID. When the protected application runs, it not only checks if there is a
ROCKEY4ND, but also checks if there is a valid UID. Only when a ROCKEY4ND dongle with a valid (pre-defined)
UID is presented, the application works. You can use editor to edit the UID.

32

3iF ROCKEEYAND — Win98/2000/XF/2003 Enveloper v2. 12

Single file encrypk l Multi-fils enceypt]

" Base passwaord; s prtobok I¥ Demo Pwd
E Filename ko encrypt:
|D:'|,R0ckey4ND_Editor.exe =

Filenarne after encryption:

|D {MND4_Rockey4ND_Editor.exe

Titlebar prampt message when Rockey not Found:

|Err0r

Content prompt message when Raockey not Found:

|N0 ROCKEY Found

w
[=]

£ [FFFFFFFF

[Use maduls

m [Use HID encryption
[+ Background timing check Time intervaliS): i M

| Encryption succeeded Iake

Figure 6.7
6.2 Multi File Encryption

“Multi-File Encrypt” is an ideal solution when developers need to encrypt many programs or several versions of the
same program. See Figure 6.8.

i¥ ROCKEY4ND — Win08/2000/ZP/2003 Enveloper v2. 12

single File encrypt Multi-file encrypt

Encrypt batch file name:

| ‘Welcome to ROCKEY Enveloper Program TMake

Figure 6.8

First you use a text editor to write a script file with the extension “.rbt”. There is a sample of Ryenv32_ND.rbt under
“TOOLS\ENVELOP™:

[Common]

Password1 = c44c

33

Password2 =c8f8

Password3 =0

Password4 =0

MessageTitle = "Rockey4ND Dongle"

MessageContent = "ROCKEY4ND not found or Driver not installed"

[EncryptFile]

InputFile = f:\windows\system32\calc.exe
OutputFile =z:\calc.exe
TimeCheck =5

[EncryptFile]

InputFile = f\windows\system32\notepad.exe
OutputFile =z:\notepad.exe

UseHardID = YES

ModuleNo =0

Its structure is like a Windows .INI file. There is a [Common] section we call the “general definition” section. Each
file that needs to be encrypted has its own [EncryptFile] section. If a parameter is not defined in an [EncryptFile]
section, its default value will come from the [Common] section as shown in the example above. Since the passwords
of all files to be encrypted and the error information to be displayed are the same, they are all defined in the
[Common] section. If a user needs a different prompting message, he/she may simply alter the MessageTitle and
MessageContent in the [EncryptFile] section.

All definable parameters are listed below:

Passwordl Password 1

Password2 Password 2

Password3 Password 3 (“0”, Advanced passwords not needed)

Password4 Password 4 (“0”, Advanced passwords not needed)

InputFile Input file name

OutputFile Output file name

UseHardID Encryption with hardware 1D (Default value is “NO”)
ModuleNo Module number, checks Zero Value attribute of selected module
MessageTitle Error message title

MessageContent Error message body

34

Chapter 7 ROCKEY4ND API

The ROCKEY4ND Application Programming Interface (API) is the most flexible and powerful means of protecting
your software. The security level of your software is determined by how you implement the API. The API set has
been simplified and is intended to make the ROCKEY4ND programming effort as effective as possible.

API encryption enables you to call ROCKEY in your application to enhance its security level. You may check the
existence of the dongle anywhere in your application and take actions as a result of the check. You may also check
the data you stored in the UDZ.

You may use the Editor program to set and write data to the modules, write algorithms to the User Algorithm Zone
(UAZ), user information to the User ID zone (UID) or take other actions. All such operations may be performed with
the API.

We will take the interface of the C language to demonstrate how to call the API. Similarly, you may call other
language interfaces the same way.

7.1 ROCKEY4ND Function Prototype and Definition

WORD Rockey
(

WORD function,
WORD* handle,
DWORD* Ip1,
DWORD¥* Ip2,
WORD* p1,
WORD* p2,
WORD* p3,
WORD* p4,
BYTE* buffer

)i

FEITIAN provides developers with a unified function from which they can employ all ROCKEY4ND operations.
This function is defined as a multi-function function.

Below is a call example for C language, and we will discuss future applications in a similar way. retcode =
Rockey(function,handle,lp1,Ip2,p1,p2,p3,p4,buffer);

The “ROCKEY” function parameters are defined as: Note: All interface parameters must be defined in your program.
ROCKEY4ND cannot transfer NULL or 0 pointers. Use of Null or 0 pointers in your program will generate an error.

35

Parameter Name | Parameter Type Parameter Meaning
Function A 16-bit number API function
Handle Address of a 16-bit number | p-KEYAND session
address
Ipl Address of a 32-bit number | long parameter 1
Ip2 Address of a 32-bit number | long parameter 2
pl Address of a 16-bit number | parameter 1
p2 Address of a 16-bit number | parameter 2
p3 Address of a 16-bit number | parameter 3
p4 Address of a 16-bit number | parameter 4
Buffer Address of a 8-bit number Buffer
1 “function” is a 16-bit number. It stands for the specific function and it is defined below:
2 “handle” is the pointer for ROCKEY operation’s handle.
3 “Ip1” and “Ip2” are the pointers for long integer parameters. Their content depends on the functions.
4 “pl”, “p2”, “p3” and “p4” are the pointers for short integer parameters. Their content depends on the
functions.
5 “buffer” is the pointer for character buffer. Its content depends on the functions.

RY_FIND
RY_FIND_NEXT

1

2
RY_OPEN 3
RY_CLOSE 4
RY_READ 5
RY_WRITE 6
RY_RANDOM 7
RY_SEED 8
RY_WRITE_USERID 9
RY_READ_USERID 10
RY_SET_MOUDLE 11
RY_CHECK_MOUDLE 12
RY_WRITE_ARITHMETIC 13

RY_CALCULATE1 14
RY_CALCULATEZ2 15
RY_CALCULATES 16
RY_DECREASE 17

/I Find ROCKEY4ND
/I Find next ROCKEY4ND

// Open ROCKEY4ND
// Close ROCKEY4ND
/I Read ROCKEY4ND
I/ Write ROCKEY4ND
/I Generate Random Number
/I Generate Seed Code

// Write User 1D
/l Read User ID

/I Set Module

/I Check Module

/I Write Arithmetic

/ Calculate 1
/[Calculate 2
/I Calculate 3

// Decrease Module Unit

36

7.2 ROCKEY4ND API Services

Here we discuss the API services in detail. The following functions marked with [*] require the two Advanced

passwords.

Note: p3 and p4 are Advanced passwords. They are for developers to operate on the dongle. The Advanced
passwords should not appear in the software you offer to your customers and you should set the two Advanced
passwords “0” when searching for dongles in your application.

1. Find a ROCKEY4ND dongle (RY_FIND)

Objective: To check if a specific ROCKEY4ND is attached to the USB port.

Input parameters:
function = RY_FIND
*pl = Password 1
*p2 = Password 2
*p3 = Password 3 (optional)
*p4 = Password 4 (optional)

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will write the ROCKEY4ND Hardware ID (HID) to *Ip1.

2. Find the Next ROCKEY4ND dongle (RY_FIND_NEXT)

Objective: To check if another specific ROCKEY4ND is attached to the USB port.

Input parameters:
function = RY_FIND_NEXT
*pl = Password 1
*p2 = Password 2
*p3 = Password 3 (optional)
*p4 = Password 4 (optional)
*Ip1 = The hardware ID of the last dongle found by RY_FIND or RY_FIND_NEXT

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will write the ROCKEY4ND Hardware ID (HID) to *Ip1.

3. Open the ROCKEY4ND dongle (RY_OPEN)

Objective: To open a ROCKEY4ND dongle with specified passwords or hardware ID.

37

Input parameters:
function = RY_OPEN
*pl = Password 1
*p2 = Password 2
*p3 = Password 3 (optional)

*p4 = Password 4 (optional)
*Ip1= Hardware ID

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will write the handle address to the *handle parameter

4. Close the ROCKEY4ND dongle (RY_CLOSE)

Objective: To close a ROCKEY4ND dongle with a specific handle.

Input parameters:
function = RY_CLOSE
*handle = ROCKEY4ND's handle

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error.

5. Read the ROCKEY4ND dongle (RY_READ)

Objective: To read the contents of the User Data Zone (UDZ).

Input parameters:
function = RY_READ
*handle = ROCKEY4ND's handle
*pl = off set of UDZ(zero base)
*p2 = length (unit is byte)
buf = address of buffer

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the contents of the UDZ written to the memory buffer.

6. Write to the ROCKEY4ND dongle (RY_WRITE)

Objective: To write data to the User Data Zone. (UDZ)

38

Input parameters:

function = RY_WRITE

*handle = ROCKEY4ND's handle

*pl = off set of UDZ

*p2 = length (unit is byte)

buf = address of buffer
Return value:

A return value = “0”

indicates that the function worked correctly. Any other return value indicates an error.

7. Generate a Random Number (RY_RANDOM)

Objective: To get a random number from the dongle.

Input parameters:
function = RY_RANDOM
*handle = ROCKEY4ND's handle

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the *p1 address populated with the random number.

8. Generate Seed Code Return Values (RY_SEED)
Objective: To get return codes from the input of a seed code.
Input parameters:
function = RY_SEED
*handle = ROCKEY4ND's handle
*Ip2 = Seed Code
Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the following addresses populated with seed code return values: *p1 = Return Code 1 *p2 = Return
Code 2 *p3 = Return Code 3 *p4 = Return Code 4
9. Write the User ID [*] (RY_WRITE_USERID)

Objective: To write the user defined “User ID” to the User ID Zone (U12Z).

Input parameters:

39

function = RY_WRITE_USERID
*handle = ROCKEY4ND's handle
*Ipl = User ID

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error.

10. Read User ID (RY_READ_USERID)

Obijective: To read the user defined “User ID” from the User ID Zone (UlZ).

Input parameters:
function = RY_READ_USERID
*handle = ROCKEY4ND's handle

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the *Ip1 address populated with the User 1D.

11. Set a ROCKEY4ND Module [*] (RY_SET_MOUDLE)

Objective: To write a value to a specific ROCKEY4ND module and set the Decrement attribute.

Input parameters:
function = RY_SET_MOUDLE
*handle = ROCKEY4ND's handle
*pl = Module Number
*p2 = Module Unit Value
*p3 = If decreasing is allowed (1 = allowed, 0 = not allowed)

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in module unit # “*p1” storing value “*p2” and the Decrement attribute set to “0” or “1”.

12. Check a ROCKEY4ND Module (RY_CHECK_MOUDLE)

Objective: To read the attributes of a specific ROCKEY4ND module.

Input parameters:

function = RY_CHECK_MOUDLE
*handle = ROCKEY4ND's handle

40

*pl = Module Number

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in “*p2” populated in the value from the Zero Value attribute (1 = module value is not zero), and
“*p3” populated with the value from the Decrement attribute (1 = module can be decreased).

13. Write Arithmetic [*] (RY_WRITE_ARITHMETIC)

Objective: To write user-defined mathematical instructions to the User Algorithm Zone (UAZ).

Input parameters:
function = RY_WRITE_ARITHMETIC
*handle = ROCKEY4ND's handle
*pl = position of first instruction in UAZ buffer = buffer address of the algorithm command string

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the UAZ populated with the algorithm command string from the buffer.

14. Calculate 1 (RY_CALCULATEL)

Obijective: To return the results of a calculation performed in ROCKEY4ND, using input provided by the developer

and the RY_CALCULATEZ1 function.

Input parameters:
function = RY_CALCULATEL1
*handle = ROCKEY4ND's handle
*Ipl = Start point of calculation
*Ip2 = Module number
*pl = Input value 1
*p2 = Input value 2
*p3 = Input value 3
*p4 = Input value 4

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

15. Calculate 2 (RY_CALCULATE?2)

41

Obijective: To return the results of a calculation performed in ROCKEY4ND, using input provided by the developer

and the RY_CALCULATE?2 function.

Input parameters:
function = RY_CALCULATE2
*handle = ROCKEY4ND's handle
*Ipl = Start point of calculation
*Ip2 = Seed Code (32-bit)
*pl = Input value 1
*p2 = Input value 2
*p3 = Input value 3
*p4 = Input value 4

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

16. Calculate 3 (RY_CALCULATE3)

Obijective: To return results of a calculation performed in ROCKEY4ND, using input provided by the developer and

the RY_CALCULATES3 function.

Input parameters:
function = RY_CALCULATE3
*handle = ROCKEY4ND's handle
*Ipl = Start point of calculation
*Ip2 = Module number
*pl = Input value 1
*p2 = Input value 2
*p3 = Input value 3
*p4 = Input value 4

Return value:
A return value = “0”
indicates that the function worked correctly. Any other return value indicates an error. A successful operation
will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

17. Decrease Module Unit (RY_DECREASE)

Objective: To decrease the value in a specified ROCKEY4ND module by “1”.

Input parameters:
function = RY_DECREASE

42

*handle = ROCKEY4ND's handle
*pl = Module number

Return value:
A return value = “0”

indicates that the function worked correctly. Any other return value indicates
an error. A successful operation will reduce the value stored in module *p1 by “1”.

7.3 Return Codes

RETURN CODE Value | DESCRIPTION
ERR_SUCCESS 0 Success

ERR_NO_ROCKEY 3 No ROCKEY4ND dongle
ERR_INVALID_PASSWORD ¢ | Gasic passwords are corect
ERR_INVALID_PASSWORD_OR_ID | 5 prrong password or ROCKEY4ND
ERR_SETID 6 Set ROCKEY4ND HID wrong
ERR_INVALID_ADDR_OR_SIZE 7 Read/Write address or length is wrong
ERR_UNKNOWN_COMMAND 8 No such command
ERR_NOTBELEVEL3 9 Internal error

ERR_READ 10 Read error

ERR_WRITE 11 Write error

ERR_RANDOM 12 Random number error
ERR_SEED 13 Seed code error
ERR_CALCULATE 14 Calculate error

ERR_NO_OPEN 15 glfn(;?:n dongle before operating
ERR_OPEN_OVERFLOW 16 Too many open dongles (>16)
ERR_NOMORE 17 No more dongle
ERR_NEED_FIND 18 No Find before FindNext
ERR_DECREASE 19 Decrease error
ERR_AR_BADCOMMAND 20 Arithmetic instruction error
ERR_AR_UNKNOWN_OPCODE 21 Arithmetic operator error
ERR_AR_WRONGBEGIN 2| Costrumter ot s on
ERR_AR_WRONG_END 23 Const number can't use on last

arithmetic instruction

43

ERR_AR_VALUEOVERFLOW 24 Const number > 63
ERR TOOMUCHTHREAD 25 Too many (>100) threads in the single
- process open the dongle
ERR_RECEIVE_NULL 0x100 | Receive null
ERR_UNKNOWN_SYSTEM 0x102 | Unknown operating system
RETURN CODE DESCRIPTION
ERR_UNKNOWN Oxffff Unknown error

7.4 Basic Application Examples

FEITIAN offers several program examples to help beginners quickly familiarize themselves with ROCKEY. These
sample programs are intentionally simplified to illustrate various security objectives and should not be construed as
sufficient for most real world implementations. These samples are for demonstration purposes only. This document is
not intended to illustrate how to take full advantage of the ROCKEY software protection system — that will depend
on particularities of the developer, the application and the licensing objectives. Section 7.5 Advanced Application
Examples are also a good reference but the developer will need to determine the best protection method given his
own constraints and objectives.

Some key points that you need to pay attention to when programming:

1 Please copy files rockey4 ND_32.h to the appropriate directory.

2 P3and P4 are Advanced passwords enabling the developers to write to the dongles. They should not appear in
software delivered to end users.

3 Be sure that none of the address parameters in the ROCKET4 functions are Null pointers. For example, even if
you do not require the Buffer, but it cannot be null, otherwise the result is unpredictable.

The following sample programs are written in VC 6.0. Let us discuss how to perform the required functions step by
step from an original program. Software developers who develop software in other languages please do not skip this
section. There are no special developing skills for the C language. Most software developers will understand the
concepts illustrated here.

Note: All the original codes of sample programs are stored in the Samples\Beginner directory on the CD-ROM.

1. Original program —Step 0
This program is the original program before it is protected with ROCKEY4ND.

#include <windows.h>

#include <stdio.h>

void main()

44

{

/I Anyone begin from here.

printf("Hello FEITIAN\n");
}

2. Find a ROCKEY —Step 1

We add an operation to find the ROCKEY at the beginning of the program. If the dongle is found the program will
continue. If it is not found the program will exit.

#include <windows.h>

#include <stdio.h>
#include "../Rockey4_ND_32.h" // Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4;
/I Rockey Variable

DWORD Ip1, Ip2;

/I Rockey Variable

BYTE buffer[1024];

/l Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn’t Password 3, Set to 0
p4 = 0; // Program needn’t Password 4, Set to 0

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");

return;

}

printf("Hello FEITIAN\n");

45

It is a very simple security objective. We only need to call the function “Find a ROCKEY dongle”. You may refer to
the introduction of the function “Find a ROCKEY dongle” in the section “ROCKEY4ND API Services”.

For testing purposes you might try to run this program with and without the ROCKEY4ND dongle attached to the
computer.

3. Open the ROCKEY -Step 2

We add an operation to open ROCKEY with specified passwords at the beginning of the program. If the dongle is
opened the program continues. If not the program exits.

#include <windows.h>

#include <stdio.h>

#include "../Rockey4_ND_32.h" // Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxcd4c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode) // Not found

{
printf("ROCKEY not found!\n");
return;
}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}

46

printf("Hello FEITIAN\n");

retcode = Rockey(RY_CLOSE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{ printf("Error Code: %d\n", retcode);

return;

¥

}

Initialize ROCKEY with Editor or API. Write “Hello FEITIAN!” to the dongle and read it back from the dongle.

See Step 3 and Step 4.
Initialize ROCKEY and write “Hello FEITIAN!” to it — Step 3:
#include <windows.h>

#include <stdio.h>
#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()

{1

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxcd4c; // Rockey Demo Password 1

p2= 0xc8f8; // Rockey Demo Password 2

p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

Il Try to find Rockey
retcode = Rockey(RY_FIND, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

47

printf("Error Code: %d\n",
retcode);
return;

}
pl =0;// Pos
p2 = 14; // Length

strepy((char*)buffer, "Hello FEITIAN! *); retcode = Rockey(RY_WRITE, &handle, &Ipl, &Ip2, &pl, &p2, &p3,
&p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}
printf("Write: %s\n", buffer);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);

return;

}

In Step 3 we have written “Hello FEITIAN!” to the ROCKEY dongle.
In Step 4 we will read the contents of the dongle.
Read dongle contents — Step 4:

#include <windows.h>

#include <stdio.h>
#include "../Rockey4 ND_32.h" // Include Rockey Header File

void main()

48

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1

p2 = 0xc8f8; // Rockey Demo Password 2

p3 = 0; // Program needn't Password 3, Set to 0

p4 = 0; // Program needn't Password 4, Set to 0

Il Try to find specified Rockeyretcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");

return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}

pl=0;// Pos
p2 = 14; // Length
buffer[14] = 0;
retcode = Rockey(RY_READ, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

return;

}

I
printf("%s\n", buffer);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

printf("Error Code: %d\n", retcode);

49

return;

}

5. Generate a true random number with ROCKEY — Step 5

Generate a random number when the program starts and write this random number to the dongle. The program
should check if the random number is correct during run-time. If a sharing device is installed to this computer, and
someone else runs this program also from another computer, another random number will be generated and written to
the dongle. Thus the program on the first computer will be terminated since the random number is not correct.

#include <windows.h>

#include <stdio.h>
#include "../Rockey4 ND_32.h"// Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ipl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

50

printf("Error Code: %d\n", retcode);

return;

}

retcode = Rockey(RY_RANDOM, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;
}
printf("Random:%04X\n", p1);

sprintf(buffer, "%04X", pl);

pl=0;// Pos

p2 = 4; // Length

retcode = Rockey(RY_WRITE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}
printf("Write: %s\n", buffer);

pl=0;// Pos

p2 = 4; // Length

buffer[4] = 0;

retcode = Rockey(RY_READ, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);
return;

}

printf("Read: %s\n", buffer);
if(buffer)

printf("Hello FEITIAN\n");

else

exit(0);

51

retcode = Rockey(RY_CLOSE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
}

Read the seed code return values with the Editor or API. The seed code calculation is performed inside the
dongle and the algorithm is confidential. You may verify the return codes or use the return codes in an
encryption routine. See Step 6 and Step 7.

Read the return codes of fixed seed code (0x12345678), Step 6:
#include <windows.h>
#include <stdio.h>
#include "../Rockey4_ND_32.h" // Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxcd4c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

52

printf("Error Code: %d\n", retcode);

return;

}

//seed Rockey

Ip2 = 0x12345678;

retcode = Rockey(RY_SEED, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

Il Close Rockey
retcode = Rockey(RY_CLOSE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
printf(*\n™);
getch();
}

Verify the return codes of the seed code to see if the program should be terminated, see Step 7:

#include <windows.h>
#include <stdio.h>
#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()

{

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Setto 0
p4 = 0; // Program needn't Password 4, Set to 0

53

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{

printf("ROCKEY not found\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

return;

//seed Rockey
Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

return;

}

if (p1==0xD03A && p2==0x94D6 && p3==0x96A9 && p4==0x7F54)
printf("Hello FEITIAN\n");

else

{

printf("Hello error\n");

return;

¥

/I Close Rockey
retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);

return;

bas

54

7. Write the User ID to the dongle with the Editor or API. User ID may be a software version or product type and it
may also be used in some encryption schemes. See Step 8 and Step 9.

Note: Advanced passwords are needed for Step 8. Initialize ROCKEY and write User ID to the dongle. See Step 8:

#include <windows.h>

#include <stdio.h>

#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0x0799; // Rockey Demo Password 3
p4 = 0xc43b; // Rockey Demo Password 4

/[Try to find specified Rockey

retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");
return;

}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

}

Ip1 = 0x88888888;
retcode = Rockey(RY_WRITE_USERID, &handle, &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);

55

if (retcode) // Error

{

printf("Error Code: %d\n", retcode);
return;

}
printf("Write User ID: %08X\n", Ip1);

retcode = Rockey(RY_CLOSE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

printf("Error Code: %d\n", retcode);

return;

}

Verify the User ID. If the User ID is not 0x88888888 output “Hello DEMO!”. See Step 9:

#include <windows.h>
#include <stdio.h>

#include "../Rockey4 ND_32.h" // Include Rockey Header File

void main()
{1

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found\n");
return;

}

56

retcode = Rockey(RY_OPEN,
&handle,&Ipl, &Ip2, &pl, &p2,
&p3,&p4, buffer);

if (retcode) // Error

{

printf("Error Code: %d\n", retcode);
return;

}

Ip1=0;
retcode=Rockey(RY_READ_USERID,&
handle,&Ipl,&I1p2, &pl, &p2, &p3, &p4,
buffer);

if (retcode) // Error

{

printf("Error Code: %d\n", retcode);
return;

}

if (Ip1= =0x88888888)

printf("Hello FEITIAN\n");

else

{

printf("Hello DEMON\n");

return;

}

retcode = Rockey(RY_CLOSE, &handle,
&Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) {

printf("Error Code: %d\n", retcode);
return;

¥
}

8. Set module value and attributes with Editor or API then check if the module is allowed to be used. Determine
whether to activate the associated application module. The module value may also be used by the program.
Check if the module is allowed to be decreased to limit the number of software executions. See Step 10, Step 11
and Step 12.

Note: Advanced passwords are needed for Step 10.

57

Initialize ROCKEY and set module value. For example we set module 0 to be valid and its value cannot be decreased.
See Step 10:

#include <windows.h>

#include <stdio.h>
#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()

WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0x0799; // Rockey Demo Password 3
p4 = 0xc43b; // Rockey Demo Password 4

/I Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}

p1=0;p2=3;p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);

58

return;

}

printf("Set Module 0: Pass = %04 X Decrease no
allow\n”,P2);

retcode = Rockey(RY_CLOSE, &handle, &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);

return;

}

If module 0 is valid in the program, output “Hello FEITIAN!”. Otherwise terminate or exit the program. See Step 11:
#include <windows.h>
#include <stdio.h>

#include "../Rockey4 ND_32.h" // Include Rockey Header File

void main()

{7
WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Setto 0
p4 = 0; // Program needn't Password 4, Set to 0

/I Try to find specified Rockey

retcode = Rockey(RY_FIND, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{

printf("ROCKEY not found\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

59

printf("Error Code: %d\n", retcode);

return;

}

pl=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);

return;

}

if (p2) printf("Hello FEITIANNN"); else

return;

retcode = Rockey(RY_CLOSE, &handle, &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

printf("Error Code: %d\n", retcode);

return;

}

}

In Step 10 we set p2=3(allowed software run times) and p3=1(Decrement allowed). That is to say module 0(p1=0)
sets the maximum software run time to 3. See Step 12:

#include <windows.h>
#include <stdio.h>
#include "../Rockey4_ND_32.h" // Include Rockey Header File

void main()

{

I
WORD retcode;

WORD handle, p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable

BYTE buffer[1024]; // Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1

60

p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

I/l Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode) // Not found

{
printf("ROCKEY not found!\n");

return;

}

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}

pl=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{

printf("Error Code: %d\n", retcode); return; }

if (p2!=1)
{
printf("Update Please!\n"); return;
}
if(p3==1)
{
p1=0;
retcode = Rockey(RY_DECREASE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if(retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
}

61

9.

printf("Hello FEITIAN\n");

retcode = Rockey(RY_CLOSE, &handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) {

printf("Error Code: %d\n", retcode);

return;

}
}

Multi ROCKEY dongles with the same passwords may work on the same computer no matter whether the
dongle types are the same or not. The program can distinguish the dongles because every dongle has a unique
hardware ID. See Step 13:

#include <windows.h>
#include <stdio.h>
#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()
{
int i, rynum;
WORD retcode;
WORD handle[16], p1, p2, p3, p4; // Rockey Variable
DWORD Ip1, Ip2; // Rockey Variable
BYTE buffer[1024]; /I Rockey Variable

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Set to 0
p4 = 0; // Program needn't Password 4, Set to 0

/[Try to find all Rockey
for (i=0;i<16;i++)
{

if (0==1i)
{
retcode = Rockey(RY_FIND, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
}
else
{ /I Notice : Ip1 = Last found hardID
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE)
break;

62

}
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}

printf(""Found Rockey: %08X ", Ipl);

retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}

rynum = i;

/I Do our work

for (i=0;i<rynum;i++)

{

/I Read Rockey user memory

pl =0;// Pos

p2 =12; // Length

buffer[12] = 0;

retcode = Rockey(RY_READ, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}
printf("%s\n", buffer); // Output

Ip1=0;

retcode = Rockey(RY_READ_USERID, &handlel[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);

return;

}
printf("Read User ID: %08X\n", Ip1);

p1=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

63

return;

}

printf("Check Moudle 0: ");

if (p2) printf("Allow ");
elseprintf("No Allow ");

if (p3) printf("Allow Decrease\n™);
elseprintf("Not Allow Decrease\n");

}

/Il Close all opened Rockey
for (i=0;i<rynum;i++)

{

retcode = Rockey(RY_CLOSE, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
¥
¥

}
A maximum of 16 dongles may be attached to the same computer at the same time. The program can access any

dongle you specify.

In the above program we defined a handle array to save the opened ROCKEY handle to prepare for the next
operation on the specified dongle. When we find the dongle we open it and we close all opened ROCKEY handles
before exiting the program. Developers are better off operating in this manner, but for a large program it is OK to
open/close the dongle just once at the beginning/end of the program. Frequent open and close operations will reduce
performance. We open the dongle in share mode so that another programs may also simultaneously operate with the
dongle.

Note: We called function RY_OPEN and RY_CLOSE in the above program. We must open ROCKEY before all
operations with the exceptions of RY_FIND and RY_FIND_NEXT. This is similar to the operation on the disk files.
You should close the dongle immediately after finishing dongle related operations.

7.5 Advanced Application Examples

This section is dedicated to providing additional illustrative examples of methods you may employ to protect your
software with ROCKEY4ND. These examples are intentionally simplified and not intended to be a complete
solutions for software protection. The method appropriate for your application will depend on constraints set by your

64

licensing agreement and other factors. (If you are familiar with the API call already, you may skip to Chapter 8

ROCKEY4ND Hardware Algorithms.)
1. User Data Zone advanced application.

In Step 14 we will write “Hello FEITIAN!” to User Data Zone (UDZ). In general we would write “Hello FEITIAN!”
to the UDZ as one character string, but security may be enhanced by writing it in two parts and then later combining

the character strings.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024]; BYTE buf[1024];

inti, j;
pl = Oxcé4c;
p2 = 0xc8f8;
p3=0;
p4 =0;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

} printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode) {

65

ShowERR(retcode);

return;

}

i=1;
while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE)
break;
if (retcode)

{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handlel[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1); } printf(*\n");

for (j=0;j<i;j++)
{
pl=0;
p2 = 10;
strcpy((char*)buffer, "Hello ™);
retcode = Rockey(RY_WRITE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}

printf("Write: Hello \n");
pl=12;
p2=12;

strepy((char)buffer, "FEITIAN!™);
retcode = Rockey(RY_WRITE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);

return;

printf("Write: FEITIANI\n");

pl=0;
p2 = 10;
memset(buffer, 0, 64); retcode = Rockey(RY_READ, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

¥

printf("Read: %s\n", buffer);

pl=12;
p2 =12,
memset(buf, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buf);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Read: %s\n", buf);
printf("\n");
printf("%s\n", strcat(buffer,buf));
retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
getch();
}

67

Step 15: You may write a serial number in the User Data Zone (UDZ) and then verify it during run time as a means
of protecting and controlling a program module.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{
WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];
inti, j;
pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

68

i=1;
while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

}

retcode = Rockey(RY_OPEN, &handle[i],
&Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}
i++;

printf("Find Rock: %08X\n", Ip1); } printf(*\n");

for (j=0;j<i;j++)

{

pl=0;

p2 =12,

strepy((char*)buffer, "alb2c3d4e5f6");

retcode = Rockey(RY_WRITE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write:alb2c3d4e5f6\n");

pl=0;
p2 =2
memset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Read: %s\n", buffer);

if (Istremp(buffer,"al"))

printf("Run Module 1\n");

else break;

pl=2;

p2 =2

memset(buffer, 0, 64);

retcode = Rockey(RY_READ, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Read: %s\n", buffer);

if (Istremp(buffer,"b2"))
printf("Run Module 2\n");

else break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf(*\n");
getch();

70

Step 16: Write a number to the UDZ and decrease it during run time as a means of controlling a software module.
We recommend you use the encryption idea in Step 12 combined with Step 16.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == 0)

return;

printf("Error Code: %d\n", retcode);
}

void main()

{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;

BYTE buffer[1024];

inti, j,num;

pl = Oxcé4c;

p2 = 0xc8f8;

p3=0;

p4 =0;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

71

{

ShowERR(retcode);
return;
}

i=1;

while (retcode == 0)

{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);

return;

}

i++;

’

printf("Find Rock: %08X\n", Ip1); } printf(*\n™);

for (j=0;j<i;j++)

pl=0;

p2=1;

strepy((char*)buffer, "3");

retcode = Rockey(RY_WRITE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);

return;

printf("Write: 3\n");
pl=0;
p2=1;
memset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

72

if (retcode)

ShowERR(retcode);

return;
printf("Read: %s\n", buffer);

num=atoi(buffer);
if(num)
{
pri ntf("HeIIoFEITIAN \n");
num--;
}
else

{

return;
}
pl=0;
p2=1;
sprintf(buffer, "%Id", num);
retcode = Rockey(RY_WRITE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;
}

printf("Write: %ld\n",num);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf("\n");

73

2. Seed code advanced applications.

Step 17: You may use different seed codes for different software modules or in different places in the application.

Then verify the seed codes in the applications.
#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;

pl = Oxc44c;
p2 = 0xc8f8;
p3=0;
p4 = 0;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

74

if (retcode)

{

ShowERR(retcode);

return;

}

i=1;
while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handlel[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;
}
retcode = Rockey(RY_OPEN,
&handlel[i], &Ipl, &Ip2, &pl, &p2,
&p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);

return;

}

i++;
printf("Find Rock: %08X\n", Ip1); }
printf(*\n™);

for (j=0;j<i;j++)

{
Ip2 = 0x12345678;
retcode = Rockey(RY_SEED,
&handle[j], &Ipl, &Ip2, &pl,
&p2, &p3, &p4, buffer); if
(retcode)

{

ShowERR(retcode);

return;

75

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0xDO03A && p2==0x94D6 && p3==0x96A9
&&p4==0x7F54)
printf("Hello Feil\n");
else break;

Ip2 = 0x87654321;
retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
ShowERR(retcode);
return;

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0xB584 && p2==0xD64F && p3==0xC885 && p4==0x5BA0)
printf("Hello Tian\n");

else break;

Ip2 = 0x18273645;

retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0x2F6D && p2==0x27F8 && p3==0xB3EE && p4==0xBE5A)
printf("Hello OK\n");

else break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

printf(*\n");

getch();

76

In Step 18 we use four outputs of the seed code function to encrypt and decrypt a character string. Be sure you only
include the “decrypt” portion of the code in the application version that is sent to end users.

#include <windows.h> #include <stdio.h>

#include <conio.h>
#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{

char str[20] = "Hello FEITIAN!";
DWORD mykey = 12345678;

int n, slen;

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;

BYTE buffer[1024];

inti,j;
pl = Oxcd4c;
p2 = 0xc8f8;

p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;
}

printf("Find Rock: %08X\n", Ip1);
retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer); if (retcode) {

7

{

ShowERR(retcode);

return;

}

i=1;
while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1);

}
printf(*\n");

for (j=0;j<i;j++)
// Encrypt my data
slen = strlen(str); Ip2 = mykey;
retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

return;

}
for (n=0;n<slen;n++) {str[n] = str[n] + (char)pl + (char)p2 + (char)p3 + (char)p4; }

printf("Encrypted data is %s\n", str);

78

// Decrypt my data

Ip2 = mykey;

retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}
for (n=0;n<slen;n++) {str[n] = str[n] - (char)pl - (char)p2 - (char)p3 - (char)p4; }
printf("Decrypted data is %s\n", str);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf("\n™);
getch();

}
}

3. User ID advanced applications

Step 19: Some developers will write the current date to the UID when initializing the dongles. During runtime the

software may compare the current system time with the date stored in the UID. The program would take appropriate

actions or continue based on the results of the comparison.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()

79

{
WORD

handle[16], p1, p2,
p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];
BYTE buf[1024];
inti, j;
SYSTEMTIME st;
pl = Oxcé44c;

p2 = 0xc8f8;

p3 = 0x0799;

p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
|[ShowERR(retcode);

return; }

printf("Find Rock: %08X\n", Ip1);
retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{ ShowERR(retcode); return;

}

i = 1; while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)
{

ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

80

}

if (retcode)
{
ShowERR(retcode);
return;
}
i++;
printf("Find Rock: %08X\n", Ip1); }
printf("\n");
for (j=0;j<i;j++)
{
Ip1 = 0x20021101;
retcode = Rockey(RY_WRITE_USERID, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write User ID: %08X\n", Ip1);

Ipl=0;
retcode = Rockey(RY_READ_USERID, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Read User ID: %08X\n", Ipl);

sprintf(buffer,"%08X",Ip1);
GetLocal Time(&st);
printf("Date:%04d%02d%02d\n",st.wY ear,st.wMonth,st.wDay);

sprintf(buf,"%04d%02d%02d",st.wY ear,st. wMonth,st.wDay);
if(stremp(buf,buffer)>=0)

printf("ok\n");

else

81

break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf(*\n");
getch();

4. Module advanced applications.

Step 20: Module encryption allows you to selectively control portions of your application with the ROCKEY4ND
modules.

#include <windows.h>
#include <stdio.h>

#include <conio.h>

#include "rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{
WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];
inti, j;
pl = Oxc44c;
p2 = 0xc8f8;

82

{

p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

i = 1; while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
i++;
printf("Find Rock: %08X\n", Ip1);
} printf("\n");

for (j=0;j<i;j++)

83

pl=0;
p2 = 0x2121;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

pl=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Check Moudle 0: ");
if (p2)
printf("Run Modul 1'\n");
else
break;

printf(*\n");

pl=38;
p2 = OXFFFF;
p3 =0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 8: Pass = %04X Decrease no allow\n", p2);
pl=8;
retcode =
Rockey(RY_CHECK_MOUDLE,
&handle[j], &Ipl, &Ip2, &pl, &p2,
&p3, &p4, buffer);
if (retcode)
{

84

ShowERR(retcode);

return;

¥

printf("Check Moudle 8: ");
if (p2)

printf("Run Modul 2!");
else break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("\n");
}
}
}

Step 21: This program discussed how to perform multi-module encryption and check the status of the modules. Many
applications are segmented into program modules that users may choose or purchase separately. For example, a user
may purchase three of four available application modules and the licensing policy would allow the user to execute
only those modules that were purchased. ROCKEY4ND modules may be used to enforce this licensing scheme.

#include <windows.h>
#include <stdio.h>
#include "../Rockey4 ND_32.h" /I Include Rockey Header File

void main()

{

inti, j, rynum;

WORD retcode;

DWORD HID[16];

WORD handle[16], p1, p2, p3, p4, retcode;

pl = Oxc44c; // Rockey Demo Password 1
p2 = 0xc8f8; // Rockey Demo Password 2
p3 = 0; // Program needn't Password 3, Setto 0
p4 = 0; // Program needn't Password 4, Set to 0

85

[/l Try to find all Rockey
for (i=0;i<16;i++)
{
if (0==1)
{
retcode = Rockey(RY_FIND, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
}

else

{

/I Notice : Ip1 = Last found hardID

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode) // Error
{ printf("Error Code: %d\n", retcode); return;

}

printf("Found Rockey: %08X\n", Ip1); HID[i] = Ip1; // Save HardID retcode =
Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer); if (retcode)
Il Error {

printf("Error Code: %d\n", retcode);

return; } }
printf(*\n");

rynum = i;

// Do our work

for (i=0;i<rynum;i++)

{
printf("Rockey %08X module status: , HID[i]);
for (j=0;j<16;j++)
{

pl =j; // Module No retcode = Rockey(RY_CHECK_MOUDLE, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode) // Error {
printf("Error Code: %d\n", retcode);
return;

}

if (p2) printf("O");

else printf("X");

86

}
printf(*\n");

}

/I Close all opened Rockey for (i=0;i<rynum;i++)
{
retcode = Rockey(RY_CLOSE, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

printf("Error Code: %d\n", retcode);
return; } } }

The above program searches all dongles with the same passwords attached to the computer and displays the status of
every module in every listed dongle. “O” means that the module may be used and is not zero; “X” means that the
module cannot be used. In a protection scheme that relies on ROCKEY4ND modules this program would help the
developer identify modules that are usable from ones that should be terminated.

5. The same code dongle advanced applications.
If you have several software products but only a single purchase code — meaning that the passwords are all the same
— you may use the solution indicated below to differentiate the dongles.

In Step 22 the UDZ is used to distinguish the dongles with the same passwords. For example, the dongles with UDZ
content of “Ver 10”correspond to software A.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
WORD handleEnd;
DWORD Ip1, Ip2;

87

BYTE buffer[1024];
inti, j;

pl = Oxcd4c;

p2 = 0xc8f8;

p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;
}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode); return;
}
i = 1; while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

88

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1); }
printf(*\n");

for (j=0;j<i;j++)
{ /*pl1=0;

p2 =5;
strcpy((char*)buffer, "Ver10");
retcode = Rockey(RY_WRITE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) {
ShowERR(retcode);
return;
}
printf("Write:%s\n" buffer);
*/

pl=0;
p2=5;
memset(buffer, 0, 64); retcode = Rockey(RY_READ, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) {
ShowERR(retcode);
return;
}
printf("Read: %s\n", buffer);

if (Istrcmp(buffer,"Ver10"))

{
handleEnd=handle[j];
break;
}
}
{1 A

retcode = Rockey(RY_RANDOM, &handleEnd, &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);

89

if (retcode)
{
ShowERR(retcode);

return;

printf("Random: %04 X\n", p1);

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode); return;

}
printf(*\n™);

In Step 23 the UID is used to distinguish the dongles with the same passwords. For example, dongles with UID of
“11111111” (hexadecimal) correspond to software A.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == 0) return;

printf("Error Code: %d\n", retcode);

void main()
{
WORD handle[16], p1, p2, p3, p4, retcode;
WORD handleEnd,;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;

pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

{
retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

i = 1; while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{

ShowERR(retcode);

return;

91

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1);
} printf("\n");

for (j=0;j<i;j++)
{
[*Ipl=0x11111111;
retcode = Rockey(RY_WRITE_USERID, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Write User ID: %08X\n", Ip1);
*/

Ip1=0;
retcode = Rockey(RY_READ_USERID, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
¥
if(Ip1==0x11111111)
{
handleEnd=handle[j];
break;

{1 A

92

pl=

0; p2=12,

strepy((char*)buffer, "Hello FEITIAN!");
retcode = Rockey(RY_WRITE, &handleEnd, &Ipl, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Write: %s\n",buffer);

pl=0; p2=12;

buffer[512]=0;

retcode = Rockey(RY_READ, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Read: %s\n" buffer);

retcode = Rockey(RY_RANDOM, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("Random: %04X\n", p1);

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;
}

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handleEnd, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

93

return;

}

printf("\n");

94

Chapter 8 ROCKEY4ND Hardware Algorithms

Developers may define their own algorithms and securely store them inside ROCKEY4ND. The dongle may then be
used to calculate a result, and the result used by the application. Since the ROCKEY4ND’s User Algorithm Zone
(UAZ) is unreadable, even by the manufacturer, this type of software protection is potentially very powerful.

Developers may use either the ROCKEY editor or the RY_WRITE_ARITHMETIC function to write algorithms to
the dongle.

8.1 ROCKEY User Defined Algorithm Introduction

8.1.1 Instruction Format

All instructions must be of the form: regl = reg2 op reg3/value regl, reg2 and reg3 are registers, value is a figure, op
is an operator.For example: A=A +B

ROCKEY supports the following operations:

+ Addition
-Subtraction

< Cyclic left shift
* Multiplication
N XOR

& And

| Or
? Compare value
is a decimal figure between 0 and 63.

Note:

1 “?” operator is for comparison, for example, C = A ? B, the results are listed below:
C A?B B?A

A<B 0 FFFF

A=B FFFF FFFF

A>B FFFF 0

It will write either “OxFFFF” or “0” to parameter C according to the table above.
First let us have a look at the algorithm example we will write to ROCKEY: A= A+B,B=B +E,
C=A*F,D=B+C,H=H”HA, B, C:-+ are registers in ROCKEY. There are a total of eight

16-Dbit registers in ROCKEY and they are designed: A, B, C, D, E, F, G and H.

95

8.1.2 Internal Algorithms & Application Interface

FEITIAN offers 3 calculation functions to call the user-defined algorithms:
RY_CALCULATEL, RY_CALCULATE2, RY_CALCULATE3

These three functions are structurally similar. Data is passed and received by way of the memory
addresses pl, p2, p3, and p4.

When passing data to registers:
Register A = p1 Register B =
p2 Register C = p3 Register
D=p4

Register variables vary according to the calculation type: Register E Register F Register G
Register H

When receiving data from registers: p1 =
Register A p2 = Register B p3 =
Register C p4 = Register D

Register A, B, C and D are user interface variables, register E, F, G and H are internal variables.

8.1.3 Differences between the Three Functions

pl, p2, p3 and p4 correspond to registers A, B, C and D in all three calculation functions. These
registers are used nearly identically by the three calculation functions. The differences between
the functions can be seen by reviewing the results written to registers E, F, G and H.

When a developer’s ROCKEY4ND internal program is called, registers A, B, C and D will be
populated with data from pl1, p2, p3 and p4. The content of registers E, F, G and H will be
initialized according to the calculation function in use. See below:

Variable RY_CALCULATE1
A P1

B P2

C P3

D P4

E HiWord of hardware ID
F LoWord of hardware ID
G Value stored in module *Ip2
H Random number
Variable RY_CALCULATE2
A P1

96

P2

P3

P4

Seed Result 1

Seed Result 2

Seed Result 3

Seed Result 4

RY_CALCULATES

P1

P2

P3

P4

Value in module *Ip2

Value in module (*Ip2 + 1)

Value in module (*Ip2 + 2)

I QMM OO |T®|>

Value in module (*Ip2 + 3)

8.1.4 API Interface of the User’s Applications

Below is the definition and description of the three calculation functions.

Function RY_CALCULATEL1 (Calculation 1)
Obijective Perform specified calculation
Input function = RY_CALCULATE1 *handle = ROCKEY’s handle *Ip1 = Start point of
parameters | calculation *Ip2 = Module number

*pl = Input value 1 *p2 = Input value 2 *p3 = Input value 3 *p4 = Input value 4
Return A return value = “0” indicates that the function worked correctly. Any other return
value value indicates an error. When success, *pl = Return value 1 *p2 = Return value 2

*p3 = Return value 3 *p4 = Return value 4

97

Note If the internal algorithm is A = B + C, then the call result is *p1 = *p2 + *p3. For
example: The internal algorithm is A = A + G, if *p1 = 0, then when returning you
may guess the content of module *p1 = *Ip2. Though you cannot read the content of
modules directly, you may determine the content by algorithm. If possible, you had
better check the content with an algorithm, not only compare in the program.

Function RY_CALCULATE?2 (Calculation 2)

Objective Perform specified calculation

Input function = RY_CALCULATE2 *handle = ROCKEY4ND's handle *Ip1 = Start

parameter point of calculation *Ip2 = Seed Code *p1 = Input value 1 *p2 = Input value 2 *p3
= Input value 3 *p4 = Input value 4

Return A return value = “0” indicates that the function worked correctly. Any other return

value value indicates an error. When success, *pl = Return value 1 *p2 = Return value 2
*p3 = Return value 3 *p4 = Return value 4

Note When performing calculation 2, the initial values of register E, F, G and H are the
return values of seed code *Ip2, to make it simple, ROCKEY calls function
RY_SEED with seed code *Ip2, and writes the return values to register E, F, G and
H for next operation.

Function RY_CALCULATES3 (Calculation 3)

Obijective Perform specified calculation

Input function = RY_CALCULATE3

parameter *handle = ROCKEY4ND's handle *Ip1 = Start point of calculation *Ip2 = Module

number *p1 = Input value 1 *p2 = Input value 2 *p3 = Input value 3 *p4 = Input
value 4

98

Return A return value = “0” indicates that the function worked correctly. Any other return
value value indicates an error. When success, *p1 = Return value 1 *p2 = Return value 2
*p3 = Return value 3 *p4 = Return value 4

Note When performing calculation 3, the initial values of register E, F, G and H are the
content of module *Ip2 and *Ip2+1/2/3, for example: When calls calculation 3 with
*Ip2 = 0, the initial values of register E, F, G and H are: E = Content of module 0 F
= Content of module 1 G = Content of module 2 F = Content of module 3 Note: The
address will return to ““0”” when the module address call exceeds 15. For example:
Calculation 3 with *Ip2 = 14, the initial values of register E, F, G and H are: E =
Content of module 14 F = Content of module 15 G = Content of module 0 H =
Content of module 1

8.2 Writing User Defined Algorithms into ROCKEY

8.2.1 Writing Algorithm

Developers may use the RY_WRITE_ARITHMETIC algorithm to write algorithms to the ROCKEY4ND User
Algorithm Zone (UAZ). The ROCKEY editor is another option for writing algorithms to the UAZ.

Function RY_WRITE_ARITHMETIC (Write algorithm)

Objective Write user defined algorithm to ROCKEY

Input function = RY_WRITE_ARITHMETIC

parameter *handle = ROCKEY4ND’s handle
*pl = Start point of calculation

*buffer = Instruction string

A return value = “0” indicates that the function worked
correctly.

value indicates an error.

Return Any other return

For example: strcpy(buffer, "A=A+E, A=A+F, A=A+G, A=A+H"); p1 = 3; retcode =
Rockey(RY_WRITE_ARITHMETIC, handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

The “buffer” is the place for you to temporarily store the algorithm. One instruction is separated

99

from another by a ",". ROCKEY will automatically assign the first instruction in the algorithm,
“Start” and the last instruction, “End”. Taking this program as an example:
Address 3 in Algorithm Zone: A=A+E Address 4 in Algorithm Zone: A=A+F Address 5 in
Algorithm Zone: A=A+G Address 6 in Algorithm Zone: A=A+H

Then 3 is the starting point of the algorithm in the User Algorithm Zone (UAZ). 6 is the end point.
ROCKEY will return to the user application after performing the instruction in address 6. The
users must call the program in the dongles from the starting point of the algorithm. Otherwise the
results are 4 random numbers.

8.2.2 Instruction Conventions

There are some conventions when developers write algorithm instructions: A = A + B Valid
instruction D = D ~ D Valid instruction A = B Invalid instruction, A = B | B would be correct. A
= 0 Invalid instruction, A = A~ A would be correct C = 3 * B Invalid instruction, C=B * 3
would be correct D = 3 + 4 Invalid instruction, there can not be two constants A = A/ B Invalid
instruction, ROCKEY does not support division operator H = E*200 Invalid instruction, constant
must be less than 64 A = A*63 If it is the first or last instruction it is an invalid instruction,
otherwise valid.

8.3 User Defined Algorithm Examples

8.3.1 Basic Algorithm Application Examples

Calculation 1 example
First we write the algorithm (We only need to write the algorithm once. The code used to write the algorithm(s) to
the dongle does not appear in the application delivered to the end user.)

pl = 0;strepy(buffer, "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A"D, B=B"B, C=C"C,D=D"D");
retcode = Rockey(RY_WRITE_ARITHMETIC, handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

Then call this algorithm from the program: Ip1 = 0; // Start point of calculation Ip2 = 7; // Module number

pl =5; // Initial value of A p2 = 3; // Initial value of B p3 = 1; // Initial value of C p4 = Oxffff; // Initial

value of D retcode = Rockey(RY_CALCULATEL, handle, &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

The command begins to execute from instruction 0 (Ip1) of the UAZ and the registers are initialized asfollows: A =5
(p1) B =3 (p2) C =1 (p3) D = Oxffff (p4)E = the upper 16-bit of HID F = the lower 16-bit of HID G = the value in
module #7 (Ip2) H = random number (16-bit)Assuming that the value in module 7 is 0x2121, the result of this

calculation will be: ((5*23 + 3*17 + 0x2121) < 1) ~ Oxffff = Oxbc71

Calculation 1 example codes — Step 24:

#include <windows.h>

100

#include <stdio.h>
#include <conio.h>
#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;

BYTE buffer[1024];

inti, j;

char cmd[] = "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A"D, B=B"B, C=C"C,

D=D"D"; p1 = 0xc44c; p2
=0xc8f8; p3 = 0x0799; p4 =
0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

101

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer); if (retcode ==
ERR_NOMORE) break;

if (retcode)

{

ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1);

}

printf("\n");

for (j=0;j<i;j++)
{/Fpl=7,
p2 = 0x2121;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
printf(*\n");
*/
pl=0;
strcpy((char*)buffer, cmd); retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3,
&p4,buffer);
if (retcode)

{
ShowERR(retcode); return;

}

102

printf("Write Arithmetic 1\n");

Ipl=0; Ip2=7,
pl=5; p2=3; p3=1;, pd=0xffff;
retcode = Rockey(RY_CALCULATEL1, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Calculate Input: p1=5, p2=3, p3=1, p4=0xffff\n");

printf("\n™);
printf("Result = ((5*23 + 3*17 + 0x2121) < 1) ~ Oxffff = 0XBC71\n");
printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf(*\n");
getch();

}

}

Calculation 2 example

In Step 25 we write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H") to
the UAZ, and the calculation result is 0x7b17.

#include <windows.h>
#include <stdio.h>
#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

103

if (retcode == 0) return;
printf("Error Code: %d\n", retcode);

void main()

{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;
char cmdl[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer); if (retcode ==
ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);

104

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1);

}
printf("\n");

for (j=0;j<i;j++)
{
[*1p2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer); if (retcode)
{
ShowERR(retcode);
return;
}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);
printf("\n");

*/

pl=10;

strcpy((char*)buffer, cmd1);

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3,&p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Write Arithmetic 2\n");

Ipl =10;

Ip2 = 0x12345678;
pl=1;

p2=2;

105

p3=3;

p4 = 4;

retcode = Rockey(RY_CALCULATE?2, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4,buffer);
if (retcode) {

ShowERR(retcode);

return;

}
printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

printf("\n");
printf("Result =d03a + 94d6 + 96a9 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
printf("Calculate Output: p1=%Xx, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf("\n"); getch(); } }

Calculation 3 example

In Step 26 we write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H") to UAZ, and the
calculation result is 0x14.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()

106

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;

char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

pl = Oxcé4c;

p2 = 0xc8f8;

p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

i=1;
while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}
retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

107

ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", Ip1);

}
printf(*\n");

for (j=0;j<i;j++)
{
I*pl=0;
p2=1;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

pl=1;

p2 =2

p3=0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);
return;
}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);
pl=2 p2=3 p3=0
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

108

pL=3, p2=4; p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);

return;
}
printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
printf(*\n");
*/

pl =17,
strcpy((char*)buffer, cmd2);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3,&p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 3\n");

Ipl=17; 1p2=0; pl=1; p2=2; p3=3;, pd=4
retcode = Rockey(RY_CALCULATE3, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

printf("\n");
printf("Result = 1+2+3+4+1+2+3+4=0x14\n");
printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

109

printf("\n"); getch(); } }

8.3.2 Complex Algorithm Application Examples

Complex example 1

In Step 27 we first search the dongle and get its hardware ID. Then we use the calculation 1 function in the program
to get the hardware ID again. Compare the two hardware IDs. If they are different the program will be terminated.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD findlp1,truelpl;

DWORD Ip1, Ip2;

BYTE buffer[1024];

inti, j;

char cmd[] = "A=E|E,B=F|F,C=G|G,D=H|H";

pl = Oxcé44c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

110

printf("Find Rock: %08X\n", Ip1);
findlpl=Ip1;

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

}

i=1;
while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode == ERR_NOMORE) break;
if (retcode)
{

ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

}

i++;
printf("Find Rock: %08X\n", Ip1);
}

printf("\n");

for (j=0;j<i;j++)

* pl=7, p2=0x2121; p3=0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

111

if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
pl=0;
strepy((char*)buffer, cmd);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 1\n");

*/
Ipl=0;1p2=7;pl=1;p2=2;p3=3;pd=4;
retcode = Rockey(RY_CALCULATEL, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");
printf("Calculate Output: p1=%x, p2=%X, p3=%x, p4=%x\n", p1, p2, p3, p4);

printf("\n");
printf("Moudle 7 : %x\n", p3);
truelpl=MAKELONG(p2,pl);

printf("truelpl : %x\n",truelpl);
if (findlpl==truelpl)

printf("Hello FEITIAN\n"); else

break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

112

printf("\n");
getch();

}

}

Complex example 2

In Step 28 we get the return codes of a seed code with the calculation 2 function. Then we compare these return
codes with the return codes we get with the same seed code at the beginning of the program. If they are different the
program will be terminated.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{

if (retcode == 0) return;
printf("Error Code: %d\n", retcode);

}
void main()
{
WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];
WORD rc[4];
inti, j;

char cmd1[] = "A=E|E B=F|F,C=G|G,D=H|H";

pl = Oxcé4c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);

113

if (retcode)

{
ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode); return;

}

i = 1; while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1); }
printf(*\n");
for (j=0;j<i;j++)
{
Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

114

ShowERR(retcode);
return;

}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

rc[0] = p1; rc[1] = p2;
rc[2] = p3; rc[3] = p4;

pl=0;

strcpy((char*)buffer, cmdl);

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

printf("Write Arithmetic 2\n");

Ip1=0;

Ip2 = 0x12345678;

pl=1;

p2 =2

p3=3;

p4 =4

retcode = Rockey(RY_CALCULATE2, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);

return;

printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");
printf("Calculate Output: p1=%X, p2=%x, p3=%X, p4=%x\n", p1, p2, p3, p4);

printf(*\n");

if(rc[0]==pl && rc[1]==p2 && rc[2]==p3 && rc[3]==p4)

printf("Hello FEITIANI\n");

else break;

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

¥

115

printf("\n"); getch(); } }
Complex example 3

In Step 29 we get the values stored in the 64 modules by using the calculation 3 function. Remember that the
modules may not be read, even with the Advanced passwords. You may write some important data to the modules or
perform some other operations.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}
void main()
{
WORD

handle[16], p1, p2,
p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE
buffer[1024];

inti, j;

char cmd2[] = "A=E|E,B=F|F,C=G|G,D=H|H";
pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

116

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode); return;

}

i = 1; while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1); } printf("\n");

for (j=0;j<i;j++)
{
J*
pl=0;
p2=1;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

117

ShowERR(retcode);
return;

}
printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

pl=1;
p2=2;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

pl=2;

p2=3;

p3 =0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

pl=3; p2=4;

p3 =0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
*/

pl=0;
strcpy((char*)buffer, cmd2);

118

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);
return;

}
printf("Write Arithmetic 3\n");

Ipl=0; Ip2=0; pl=0; p2=0; p3=0; p4=0;
retcode = Rockey(RY_CALCULATES3, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Calculate Input: p1=0, p2=0, p3=0, p4=0\n");

printf("\n™);

printf("Moudle 0: %x\n",p1);

printf("Moudle 1: %x\n",p2);

printf("Moudle 2: %x\n",p3);

printf("Moudle 3: %x\n",p4);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}

printf("\n"); getch(); } }
Complex example 4

In Step 30 we use all the three calculation functions and we write 4 calculation sections to the ROCKEY dongle. The
results of the three calculations are used for additional calculations. Of course you may let ROCKEY perform much
more complex calculations according to your situation.

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#include "../Rockey4_ND_32.h"

119

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
}

void main()

{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;
int t1,t2,t3;

char cmd[] = "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A"D, B=B"B, C=C"C, D=D"D";

|char cmd1[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";
char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";
char cmd3[] = "H=H"H,A=AJA, B=B|B, C=C|C,D=A+B,D=D+C";

pl = Oxcd4c;

p2 = 0xc8f8;

p3 = 0x0799;

p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode); return;
}

i = 1; while (retcode == 0)

120

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)

{
ShowERR(retcode);

return;

}

retcode = Rockey(RY_OPEN, &handlel[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

i++;

printf("Find Rock: %08X\n", Ip1);

}
printf(*\n");

for (j=0;j<i;j++)
pl=7; p2=0x2121; p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);

printf(*\n");

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

121

return;
}
printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);
printf("\n");
pL=0. p2=1 p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

pl=1; p2=2
p3 =0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

pl=2;
p2=3;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

p1=3;
p2 = 4;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);

return;

122

}
printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);

printf(*\n");

pl=0;

strcpy/((char*)buffer, cmd);

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Write Arithmetic 1\n");

Ipl=0; Ip2=7, pl=5 p2=3; p3=1, p4d=0xffff;
retcode = Rockey(RY_CALCULATEL, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Calculate Input: p1=5, p2=3, p3=1, p4=0xffff\n");

printf("Result = ((5*23 + 3*17 + 0x2121) < 1) ~ Oxffff = 0XBC71\n");
printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, pd);
t1=pl;

pl=10;
strcpy((char*)buffer, cmd1);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3,&p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;

printf(""Write Arithmetic 2\n");

123

Ipl =10;
Ip2 = 0x12345678;
pl=1; p2=2; p3=3;

p4 =4
retcode = Rockey(RY_CALCULATEZ2, &handle[j], &lIpl, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

printf("Result =d03a + 94d6 + 96a9 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
printf("Calculate Output: p1=%x, p2=%X, p3=%x, p4=%x\n", p1, p2, p3, p4);
t2=p1;

pl =17,

strepy((char*)buffer, cmd2);

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ipl, &lp2, &pl, &p2, &p3,&p4, buffer);
if (retcode)

{

ShowERR(retcode);

return;

printf("Write Arithmetic 3\n");

Ipl=17; 1p2=0; pl=1; p2=2; p3=3;, pd=4
retcode = Rockey(RY_CALCULATES, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

printf("Result = 1+2+3+4+1+2+3+4=0x14\n");

124

printf("Calculate Output: p1=%x, p2=%Xx, p3=%x, p4=%x\n", p1, p2, p3, p4); t3=p1;

printf("\n"); pl=24;
strcpy((char*)buffer, cmd3);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3,&p4, buffer);

if (retcode)
ShowERR(retcode);
return;

3

printf("Write Arithmetic \n");

Ipl=24; Ip2=7, pl=tl; p2=t2; p3=t3; pd=0;
retcode = Rockey(RY_CALCULATEL, &handle[j], &Ipl, &Ip2, &pl, &p2, &p3, &p4,buffer);
if (retcode)

{
ShowERR(retcode);

return;

}

printf("Calculate Output: p1=%x, p2=%Xx, p3=%x, p4=%x\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handle[j], &Ipl, &lp2, &pl, &p2, &p3, &p4, buffer); if (retcode)
{

ShowERR(retcode);

return;

}
printf("\n");
getch();

}

}

8.3.3 Advanced Algorithm Application Examples

In Step 31 we will write the core algorithms or codes of the application to the ROCKEY dongle. Below are three
programs: the original program, the ROCKEY initializing program and the final program for the end users.

The original program:

#include "stdafx.h"

#include "DrawCircle.h"

125

#include "DrawCircleDoc.h"

#include "DrawCircleView.h"

#include "DrawParamDIg.h"
#include "DrawMethodDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE_ ;
#endif

void CDrawCircleView::DrawCircleMidPoint(CDC *pDC, int iCenterX, int iCenterY, intr)

{

intx=0; inty=r; intp=1-r;

TRACE("Origin\n");

CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

m_IpCircleBuf[0].x = x; m_IpCircleBuf[0].y = y; m_nPointCount=1,;
while(x<y)

{

X++;
if(p<0)

{

p+=2*x+1,

}

else

{

y--

p+=2%(x-y)+1; }

TRACE("%d,(%d,%d);",p,X.y);
CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);
m_IpCircleBuf[m_nPointCount].x = Xx;
m_IpCircleBuf[m_nPointCount].y = y; m_nPointCount++;
}

TRACE("\n");

Initialize ROCKEY:

#include "stdafx.h"

#include <windows.h>

126

#include "..\inc\rockey4 ND_32.h"

void ReportErr(WORD wCode)
{ printf("ERROR:%0d\n",wCode); }

int main(int argc, char* argv[])

{

WORD p1=0xc44c,p2=0xc8f8,p3=0x0799,p4=0xc43b;

DWORD Ip1,Ip2;

WORD handle[16];

BYTE buffer[1024];

BYTE cmdstr[] = "B=B|B,B=B+1,B=B*2,B=B+1,A=A+B,C=C-1,C=C*2,B=A-C";
WORD retcode;

retcode = Rockey(RY_FIND,&handle[0],&Ip1,&Ip2,&pl,&p2,&p3,&p4 buffer);

if(retcode)
{
ReportErr(retcode);
return O;
}

printf("Find successfully\n™);

retcode = Rockey(RY_OPEN,&handle[0],&Ip1,&Ip2,&pl,&p2,&p3,&p4,buffer);

if(retcode)

{
ReportErr(retcode);
return O;

}

printf("Open successfully\n");

pl = 10;
retcode = Rockey(RY_WRITE_ARITHMETIC,&handle[0],&Ipl,&Ip2,&pl,&p2,&p3,&p4,cmdstr);
if(retcode)

{
ReportErr(retcode);

return O;
}

printf("Write arithmetic successfully\n");

retcode = Rockey(RY_CLOSE,&handle[0],&Ipl,&Ip2,&p1,&p2,&p3,&p4,buffer);

127

return 0; }

The final program for the end users:

#include "stdafx.h"

#include "DrawCircle.h"

#include "DrawCircleDoc.h"
#include "DrawCircleView.h"
#include "DrawParamDIg.h"
#include "DrawMethodDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE_;
#endif

WORD p1=0xc44c,p2=0xc8f8,p3=0x0799,p4=0xc43b;

DWORD Ip1,Ip2; WORD handle[16];
BYTE buffer[1024];

void CDrawCircleView::DrawCircleMidPoint_Rockey(CDC *pDC, int iCenterX, int iCenterY, intr)
{

intx=0; inty=r; intp=1-r; intseed=0;;

short p1,p2,p3,p4;;

CirclePlotPoints(pDC,iCenterX,iCenterY x,y);

TRACE("Hardware\n");

m_IpCircleBuf[0].x = x; m_IpCircleBuf[0].y = y; m_nPointCount=1;
while(x<y)

{

pl=p; p2=x; p3=y; p4=seed;

if(lRunRockey((WORD&)p1,(WORD&)p2,(WORD&)p3,(WORD&)p4))

AfxMessageBox("Error during run time");
break;

}

if(p<0)

128

TRACE("%d,(%d,%d);",p,X,y);

CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

m_IpCircleBuf[m_nPointCount].x = x;

m_IpCircleBuf[m_nPointCount].y = y; m_nPointCount++;
} TRACE("\n™); }

BOOL CDrawCircleView::RunRockey(WORD &A, WORD &B, WORD
&C, WORD &D)
{
WORD retcode;
Ipl =10;
retcode =
Rockey(RY_CALCULATE1,&handle[0],&Ip1,&Ip2,&A,&B,&C,&D ,buffe
n;
if(retcode)
{
return FALSE;
}else return TRUE;

8.4 Note

ROCKEY4ND has as many as 128 instructions. Developers do not need to consider the start and end attributes of an
algorithm. ROCKEY will automatically assign a Start/End attribute to the instructions. In practice this means that if
the developer writes a two-instruction algorithm to the User Algorithm Zone (UAZ), and then a three instruction
algorithm, the result will not be a single five instruction algorithm. Algorithms that begin with “Null” or “E” will
produce unpredictable results.

8.5 Tips

1 Make randomized calls to the ROCKEY API - Randomly scatter calls to the ROCKEY API from within your
application. Calls made to the API from time-to-time will make it very difficult to mimic the behavior of the
protection method or hack the application.

2 Use dynamic information with the seed code function -The use of dynamic information with the seed code
function, such as system date, makes the protection method stronger because the results can change with the input
and calculation.

3 Do not repeatedly use the same protection method in your application -If you use the same protection

129

method several times in your application it will be easier for the cracker to find the rule and crack your application.
Protection methods that are complex and rely on a number of different checks and calculations are the most difficult
to crack.

4. Encrypt the character string and data — In “Step 18” of this document we showed an encryption method
using information stored inside the dongle. Encrypting a character string in the manner described is a strong method
because a failure to properly decrypt the string can cause the application to terminate or take other actions in
accordance with the licensing agreement.

5. Use API encryption and Envelope encryption together — The strongest protection method will have the

developer first using a complex and dynamic implementation of the ROCKEY API, and then protecting this new file
with the ROCKEY Envelope.

Please keep the end user environment in mind when you design the software protection solution. You should flexibly
adopt the methods suggested here within the limitations and objectives of your environment and licensing policy.

130

ROCKEY4ND Technical Specification

Picture

Dimensions 51 x 16 X 7 mm

Color Blue, Green, Gray, Brown
Memory 1k

Min. Operating Voltage 5V

Current Consumption (active/idle) | <=50 mA

Max. Write Cycle >100,000

Connector USB Type A

Operating Temp. 0-700C

Data Retention 10 Years

Onboard Algorithm 128 User-defined simple algorithms
Hardware 1D Globally Unique
Driver Driverless

Remoter Update

High-level Secure Remoter Update, Multiple-Schemes

Production Tool

Batch Production Tool

Module Management

Multiple-Module and Management Schemes

Operating Systems

Windows 98SE/ME/2000/XP/ Server 2003, Linux, Mac OS

Enveloper

Yes

Invisible Module Zone

64 modules to control software release schemes

Random Generator

Hardware Random Generator

Abundant APls

VB, VC, Delphi, FoxPro, Java, PB, VS.Net...

131

