ROCKEY6 Smart Tutorial

Table of Contents

CHAPTER 1 OVERVIEWutuitituctncenctecencencescrscescrscescsscsscsscsscsscsscsscsscsscsscssssscsscsscsnns 1
1.1 BRIEF INTRODUGCTIONcuuttinitiniti ettt e et ettt e et e et et et et e et ea et en e e enenenss 1
1.2 ENCRYPTION REQUIREMENTSuituittitnieitie et iee et ea et e et eae e eae e eas e eae e ea e e eaeeneenaes 1
1.3 COMMON ERRORS ...ttt aanas 1

CHAPTER2 KEIL INTEGRATED DEVELOPMENT ENVIRONMENTccccteeertreceereeens 4
2.1 KEIL IDE SETTINGS ..euiuiunitititeie ittt ettt et e et et e et et e et e ea e eneens 4
2.2 CREATING A PROJECT .. 4
2.3 PROJECT OPTION SETTINGS ...uetuiutiunietitinttie e ta et ta et tae et eae ettt e raeenens 4

CHAPTER 3 ROCKEY6 SMART ESSENTIALcuititiierieneenceecreceeceeceecsecsscsecsscsscsacsnns 8
3.1 DEVELOPMENT INTRODUGCTIONuuuinitinitinintttn e inee et en et ea e e ea e eneaeneaeenenaenss 8
3.2 SOFTWARE PROTECTION CONCEPTS. . .uuittitnittitieite ettt eteia et iae e eae et e eneeneeneeneenas 8
3.3 CREATING A C51 PROJECT ..ieniniiiinie ettt et 9
3.4 CREATING EXECUTABLE FILE IN THE DONGLE. ...ttt eeeeeeeeeeenen 10
3.5 EDITING AND ENCRYPTING DONGLE INTERCOMMUNICATION PROGRAMccvvvvvvninnnnnen. 11
RN O0):3X 070) 5] 0 25 55 21 0 4 (0] AP 13
R A ©/6) (@) 5113 (6] [P TTTT 13

CHAPTER4 IDE APPLICATION ...utuittititetteeeeeeeseraesesssesesssssesssssssssssssssssssssessssssnssnne 15
4.1 FORMATTING A CARD ...uituiiniititi ettt et e e e e e e e e e e e e e anaanas 15
4.2 BURN IN BULK ...ttt et eeaas 15
4.3 PROGRAM DEBUGGINGuiuuininitinittinie it e e et e et e e e e e e e eneaeenenas 16

CHAPTER 5 BASIC PROGRAMMING TECHNIQUES.ciccitiiienieeniencrencrnccencenscsnccanes 18
5.1 FILE READING AND WRITINGouiuiininiiinii ittt ettt et e e e et e e e e e et e e eeneanens 18
5.2 FLOATING POINT COMPUTATION. ... cuuintinininine ittt eae et e et e et e ene e ene e anaanas 20
5.3 ENCRYPTION AND DECRYPTION.utuinttintiinettt ettt et e e e et e e e et et e e eeneanens 23
5.4 FUNCTION EXPANSION .. cutiiittiitt ittt et e e e et et e e anens 26
5.5 DONGLE IDENTIFICATIONutuuininin ettt ee et e e e e e e e e e e e e e e anaanes 26
5.6 MULTI-THREAD SUPPORT ...uouiutinininie ettt et et e e et e et et et e e e et et e e e eneneanens 27

CHAPTER 6 SOFTWARE RELEASE MANAGEMENTccuitttitiieieeneeiceccececcacacencancene 28
6.1 USING TIMES LIMITATION. .. .ututtuintininte ittt ettt e e et e et e e e e e et e e e e eenaanens 28
6.2 USING TIME CONTROL .. cutuinitinite ettt e e e e e e e et e e e aeenens 28
6.3 FUNCTION LIMITATION.iuiitinin ittt et e e e e e e e e e e e aneanas 30

CHAPTER7 REMOTE UPDATE ... ttitetieeteeieeeteetereesesssssesssssessssssssssssssssssssssssans 34
7.1 MULTI-MODULE MANAGEMENTuvnititinii ettt e e et e e ae e anens 34
7.2 USING REMOTE UPDATE TAG ... cuiniiiiiiiie et 35

7.3 REMOTE MODULE MANAGEMENT

Chapter 1 Overview

1.1 Brief Introduction

ROCKEY6 Smart dongle is the 6" generation programmable dongle from FEITIAN Technologies.
It could convert your core codes into an executable file and store the file inside the dongle. The
executable file can only be executed inside the dongle. It is completely isolated from the
vulnerable computer environments. This would prevent the executable file from being traced and
copied. Therefore, the more complicated the code would be, the less possibilities the program is
cracked.

With ROCKEY6 Smart remote update management features, the user could update the dongle
software frequently and safely. It would remain dongle’s safety and reliabilities as time goes.
Based on those key facts, the ROCKEY6 Smart is also called “Uncrackable Dongle”.

1.2 Encryption Requirements

ROCKEY6 Smart dongle key security features:
(1) Unique - It is required to create and store an executable file inside the dongle. This inside file
is completely sealed and isolated from the PC. Without the executable file inside the dongle,

the entire program cannot be executed successfully or completely.

(2) Inaccessibility - This dongle is based on the smart card chip. Its hardware is impossible to
duplicate; and all data inside the chip cannot be accessed without proper authorities.

1.3 Common Errors

We have published a book named <<Software Encryption Theories and Applications>>. In this
book, we have summarized some of the common errors for using dongle products. The following
is some of the points.

1.3.1 Simple Search Mode

This mode is used to determine if the dongle is connected to PC. If the dongle exists, then the

program is executed forward, and there would be not error messages prompted.

1.3.2 Memory Reading Distinction

When software developers use the memory dongle, this unsecured method is commonly used.

Similarly, it is also commonly happened when the users use the stored data from the dongle.

By using this method, all data saved in the dongle memory would be read out. They are either
simply compared with the results from the executing program or used directly. In this way, the
dongle intercommunication interface would be unprotected exposed. It would cause the encrypted
data to be traced and located. Once the secured data is found, it is possible for the data to be

simulated and the software to be cracked.

We would suggest using the dongle with memory capacities in following ways. Firstly, “separately
use the writing data and the reading data”; it means to use dongle storage as a special memory
space of the executing program. In this special memory space, the concurrent running programs
could mutually share and exchange all data resources. One place is for writing data; another place
is for reading data. For example, we could create a random number to the program once it starts.
Every data exchange would use this random number in the program. And data can be only
transferred after the successful computation. In this way, the process of writing and reading data in
the dongle would be separated. Additional, this method would enhance the dongle security. That is,
the cracker still cannot decrypt the program even the encryption method is identified. Because
there are too many complied source code need to be interpreted. In most case, the decryption

would be failed due to easier destruction of address offset.

1.3.3 Obvious Application Interface

When software developers configure the dongle, for the purpose of applying the dongle
verification code in different languages (such as VB and Delphi), the verification code is usually

encapsulated in a DLL file with an external verification function.

1.3.4 Weight Too Much For Envelope Encryption

When using the dongle, most software developers favor to we the envelope encryption tool for
executable files. It looks fast, secure and convenient. However, it is not always true when we view

this from different perspective.

Envelope encryption directly encrypts the binary executable file. It is convenient for no adding
any extra encryption algorithms. But, since envelope encryption is standard technology today and
it is quite well known for everybody; it is possible to be decrypted by using many of existing
envelope decryption tools.

All envelope encryption tools provided by the dongle manufacturer are working with the dongle
API. Once the program is encrypted via the dongle API before the envelope encryption, all dongle
API calling functions will be safely hidden. It would achieve much better security result.

In other words, if envelope encryption is the only used method, it will not protect the software as
well as we supposed. Therefore, we highly recommended our users to use the dongle API

encryption and envelope encryption together.

1.3.5 Regulated IO Computation

When software developers configure the dongle, their programs usually need IO communication
with the dongle programs. In some cases, numbers of dongle outputs occur exactly after numbers
of the dongle inputs. It looks secure since part of program requiring the output from the dongle
and never showing in the PC. However, since all dongle inputs and outputs are regulated occurred,
it is possible for the data to be simulated and the software to be cracked.

1.3.6 Improper Computation

It refers to the paired encryption computations are used for both dongle and the PC programs. In
other words, a program is encrypted in the dongle and decrypted in the PC with the same or
reversed computation method. Once the crackers figure out the computation patterns, it wouldn’t

take long for them to crack the software.

Chapter2 Keil Integrated Development Environment

Now, the current version of Keil only supports the Keil C51. Its IDE is Keil uVision2 that could be
downloaded from http://www.keil.com/, or get its DEMO version from ROCKEY6 Smart SDK
(/Support/Keil uVersion2). To use them, all users need to add the file headers and relevant libraries
to the project. After that, all features could be performed once their relevant system functions are
called.

2.1 KEIL IDE Settings

Before the first time to use KEIL, ROCKEY6 Smart needs to be configured some project settings.
Firstly, copy “\TOOLS\DEBUGER\RySSimulator.dll’ and ‘DIC32R.DLL’from ROCKEY6 Smart
SDK to \C5I\BIN’ and ‘\UV2’in the ‘KEIL’ directory accordingly. And update the ‘TOOL.INI’
file. Then add “TDRV4=BIN\RySSimulator.dll ("FEITIAN ROCKEY Smart Simulator")”to the

C51 part. “TNRV4’refers to a serial number. If this number is used by a program, then the next

number would be used.

2.2 Creating a Project

To create a new project, click ‘Project’ -> ‘New Project’ from KEIL UV2. When a message box
pops up, input project name and save it. Once project name is chosen to save, a window “Options
for Target ‘Target]’” shows. Please select ‘CPU’ from the ‘51 series’; especially for those ‘CPU’s

aren’t selected for ‘51 series’ at the first time. See Figure 2-1 below.

Device | Target | Ouput| Listing| C51 | 451 | BLS1 Locate | BLS1 Misc | Debug | Utiies |

Database: | J
Wendor Intel
Device: B0CS1BH I Use Estended Linker [LX51] instead of BLE1
Family: MCS-51 r
([80C21EH ~ MC5-51 CMOS zingle-chip 8-bit microcontraller with
[soc3z 321/0 lines, 2 Timers/Counters, 5 Interrupts/2 priority levels,
4, Bytes ROM, 128 Bytes on-chip RAM
[C] 80CH1FA
([eOCHIGR
(L7 80cs15L
(L1 B0LE1FA,

[&1/83/87C515L
[83/a7Ca1Fs
[83/87C51FE
[83/87CS1FC
[B3/67C51GE

([83/87C51RA
73 RUAFCRIRR

0K | Caniel | Defaults

Figure 2-1

2.3 Project Option Settings

Open menu “Project -> Options for Target ‘Targetl’”. For ‘Memory Model’ in ‘Target’ page, we
could choose default ‘Small’. We suggest using this model simple because it usually executes
efficiently. The other two models could also be used to their related libraries. However, since

‘Compact’ model settings are complicated, we would not suggest the new users to use it. Please

see figure 2-2.

Options for. Target ‘Target 1°

Device Taiget | Output | Listing| C51 | 451 | BL51 Locste | BL51 Misc | Debug | Utiites |
Intel BOCS1BH
Htal [MHz) (U ™ Use On-chip ROM (0x0-0xFFF)
Memory todsl: |Sma||: wariables in DATA ﬂ
Code Rom Size: |Large B4k program j
Operaling spstem: |Nuna j
Off-chip Code memary Off-chip Xdata memaory
Start: Size: Start: Size
Eprom ’— ’— Ram ’— ’—
Eprom ’— ’— Fam ’— ’—
Eprom ’— ’— Fam ’— ’—
[™ Code Banking Stark: End r
Banks: ’—_| Bark Area ’— ’— r
’Tl Cancel | Defaults

Figure 2-2

In the window of “Project -> Options for Target ‘Targetl’”, choose “Create Hex file” from the
‘output’ page. And choose ‘Run User Program #1°, then input “hexhin,exe test.hex test.bin”. The

project names may change corresponding to ‘test.hex’ and ‘test.bin’. Please copy ‘hexbin.exe

from the SDK to your project directory.

NOTE: it is not necessary to copy it, if you only want to debug the program. But it is mandatory to
do so, if you are going to burn the program in bulk to the dongle. The reason for that is for the

process being designed to use the BIN file. Please see Figure 2-3 below.

Options for Target ‘Target 1°

Device | Target (ORI Listing | C51 | 451 | BL5T Locate | BLST Misc | Debug | Uiites |

| Select Folder for Objects... | Mame of Executable: |lESt

{* Create Executable: C:\test

¥ Debug Information V¥ Browse Information [Merge32K Hexfile
[Create HEX File HEX Format |HE=-80 -
" Create Library: C:ilestLIB [™ Create Batch File
After Make
¥ Eeepwhen Complets I Start Debugging

[Run User Program #1: | Browse...
[Run User Program #2: | Browse...

oK | Cancel | Defaults

Figure 2-3

Please choose to use the simulator from the ‘DEBUG’ menu. Then choose “Go till main”. When
program the ROCKEY6 Smart dongle, if we want to use the debugging program in Keil IDE, the

setting is required.

Options for, Target ‘Target 1°

Device | Target | Output | Listing| C51 | 451 | BLS1 Locate | BLST Mise Debug | Urites |
" Use Simulator Settings || ™ Use:] art Sirnulator Settings
v Load Application at Startup v Go till main) W Load Application at Startup W Go tll mainl]
Initialization File: Initialization File:
Restore Debug Session Settings Restore Debug Session Settings

W Breakpoints vV Toolbox [V Breakpoints v Toolbox

[watchpoints & P, [watchpoirts

W temaory Display IV Memamy Display
CPUDLL: Parameter: Diriver DLL: Parameter:
58051.DLL | 580810l |
Dialog DLL: Parameter: Dialog DILL: Parameter:
|DP51.DLL o1 |TPS1.DLL P51

Ok | Cancel | Defaults |

Figure 2-4

Click “Settings” button to configure the debugger. If a real card is connected, then choose “Use
the Real Card”. Whether to select to use the real device depends on if you want to burn the
program to the real card. If you don’t really need the real device, you could omit this step and
debug your program directly with the simulator.

Card Config E|

Cancel

Yirtual Card

|E AKeilUV2\Rockeyb_keil .vcrl

Real Card
Using Real Card The Password is Valid!

|Flnckey Smart 0 j Refresh

FF FF FF FF FF FF FF FF Verify

Figure 2-5

Finally, choose simulator from the “Ultilities”. This simulator is used for download. After setting

this, a button *#*| would be showed in the KEIL main window. This button is used to download

data to the card once program-debugging finishes.

Options for, Target ‘Target 1°

Device | Target| Output | Listing| ©51 | 451 | BLS1 Locate | BLST Mise | Debug Utiities
Configure Flash Menu Command

(% |lze Tanget Driver far Flazh Programming

rt Sirnulator Settings

™ Use External Tool for Flash Programming

Command: |

Arguments: |

-

Ok | Cancel Defaults

Figure 2-6

Choose “View -> Project Window” from the menu. In the left hand side of your window, once all

default directory tree is expanded, choose “Source Groupl”, and right click the mouse to select

“Add files to Group ‘Source Groupl’”.

Then import the file header and libraries from

‘API32\C51” into your project as showed in Figure 2-7 below.

i test - Wkision? — [D:\SampTargitestimain.c]
Bl File Edit ¥iew Project Detmg Flash Periphersls Teols SVCS Window Help - =X
& E ¥9 AN [Target 1 -l B E @ A e -lé B &
x| [#include "main.h” =
=5 Target 1 void main()
o 23

Options for Group ’Seuwrce Group 1’

¥ Rebuild target
%] Enild targzet T

Targets, Groups, Files..

Remove Group *Source Group I’ and it's Files

¥ Include Dependencies

" B Fites P Regs | {0 Books .

x|
il

Ll ®

K| Build fy Conrnand A\ Find in Files

Add Files te current Project Group

l;l
I« |

Lilz C:2 nm R

Figure 2-7

Chapter 3 ROCKEY6 Smart Essential

3.1 Development Introduction

ROCKEY6 Smart is a programmable dongle. It has two development models: one is dongle
internal program; another is the external program communicated with the program inside dongle.
After the dongle software and hardware get ready, please follow the steps below to develop a
simple protection program.

3.2 Software Protection Concepts

ROCKEY6 Smart dongle is developed by using C language. The developers need to study the
provided system functions usages before they deploy the dongle.

The following diagram is the process for dongle configuration:

Get{Modify |
Easic Projact Core Code » C Language o C51 Project
Choose Core non-C Language Craate
Coda

Froject) Faoject
Femove Core Code Testmg
L d Y
Project Withaut | COMMUEAtion | 4, bl & | SmartCard | BuminBulk | wirngl Cad
Cone Code Prodact Projact | Executable File Escecutabla File
|

Figure 3-1 Development Process

Please consider the following algorithm: Input 15 bytes ID numbers, its output are 18 bytes
numbers. This is a simply message-digest algorithm. Assume those number is a part of critical
code, then we could save those numbers into the dongle. An example in C language is below:

1 unsigned char Wi[l18] = {7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1};
2 char Ai[11]={'1",'0",'%",'9",'8','7",'6",'5",'4",'3",'2"};
3 void ConvertID(char ID[15],char newID[18])

4

5 int i,j,s;

6 s=0;

7 memcpy(newlD,ID,6);

8 newID[6]='1";

9 newID[7]='9';

10 memcpy(newlD+8,1D+6,9);

11 for(i=0;i<17;i++)

12 {

13 j=(newlID[i]-48)*Wi[i];

14 s+=j;

15 }

16 s%=11;

17 newlID[17]=Ai[s];
18 }
Below is written in C51 C language. It would do the same thing.

1. unsigned char Wi[18] = {7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1};
2. char Ai[11]={'1",'0",'x",'9",'8','7",'6",'5",'4" '3 2"} ;
3. void main(void)

4. {

5. inti,,s;

6. s=0;

7. byte ID[15],newID[18];

8. get _input(ID,0,0,15); /Input ID numbers

9. memcpy(newlD,ID,6);

10. newID[6]='1";

11. newlID[7]='9';

12. memcpy(newID+8,ID+6,9);

13. for(i=0;i<17;i++)

14. {

15. j=(newlDJ[i]-48)*Wi[i];

16. st=j;

17. }

18. s%=11;

19. newID[17]=Ai[s];

20. set response(newlD, 18); //Output new ID numbers
21. exit(); //program ends

22, }

The 3° line is the main function definition. The 8th line: ‘get_input(ID,0,0,15)’ is used for
receiving the external input data. ID is buffer, parameter 2 means offset, 3 means the input data
type, 0 means byte and 15 means data length. The 20th line: set_response(newlD, 18) returns the
data to the host machine. In this function, ‘newID’ refers to the buffer address, ‘18 means the

length of the output data. ‘exit()’ means programming ending.

In KEIL compile environment, it uses C language. However, it is different with the standard C
language due to its distinguished methods for defining variables. An example is: ‘unsigned char
xdata buf[128]’. ‘xdata’ means putting the variable into ‘xdata’ area. If a lager array is defined, it
is usually assigned at ‘xdata’ area in order to get enough memory space. If you want to know more

about C51 features, please refer to the C51 user manual for details.

3.3 Creating a C51 Project

Converting the core code into KEIL C language, and creating a C51 project. Then this part of core
code could be compiled, debugged and downloaded to the dongle.

After creating a C51 project, please add your source code, SDK files:

‘API32\C51\Small Mode.lib’ and ‘sys_api.h’ into the project.

9

Once you have done those, you could start to debug, compile and/or download your program.

3.4 Creating Executable File in The Dongle

Once the project is created, the source code could be compiled and debugged. It could be
debugged in different methods, such as in steps or in blocks. See Figure 3-3:

I% sss — Wision2 — [D:\Producti\Rockeyfi\RockeyfHD\systestiversion. cl

B File Edit View Broject Debug Flash Feripherals Tools SVCS indow Help -8 x|

=A== A Gy -léh @S @ DR gy [V i
MmEOeo®® o> REVEEE 2
x| P ST & 24T TR A Z‘
T [¥alue || | ErmEieEs
=Y AR T (45)
e e BAFIR A (45 7)
" w00 COSKR A (4%)
2 B0 HIES ST (25 7)
3 000 A% A ST (2F)
rd D00 HrmiDL 2T
5 000 FH P @inz (25 7)
6 0x00 R FHATHEHE R EERY, SFEFNED SR HITHE.
rT 000 i
=l Sys #include "sys_api.h”
a 000
. D ITHE... | ID R R BES B o
s oone | E SFO1 FF 11 00 EESIHE 0
e 0| g@eonn 2000 FF #3300 AT O

— T -
Filez @ Regs ':@ Einoks : LIJ
wddress: |i:0xBa H

:0x6A: 00 00 00 OO0 00 OO0 00 OO0 OO0 00 00 00 00 00
:0x78: 00 00 00 OO0 00 00 00 00 00 OB 00 00 00 00
:0x86: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:0x34: 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00
:0xAZ: 00 00 00 OO OO0 OO0 00 00 OO0 OO0 00 00 00 00
:0xB0: 00 00 OO0 OO0 00 00 00 00 00 00 00 00 00 00
:0xBE: 00 00 00 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00
:0xCC: 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00
> :0xDA: 00 00 00 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00
ASM ASSIGN BreakDisable BreakEnable BreakEill F:{ :0=E8: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .
W [M [Build_h Comm| 4 [» \ Memory #1 £ Memory #2_h Wemary #3 A Memory #4 §

Ready L:32 C:1 Hum R/

x| "y . n -
LLoad D:sNtesthtest -

(SIS

o e

Figure 3-2 Debugging Window
If debugger meets function ‘get input’ and/or ‘set _response’, it will pup up the following window

for the data inputting in or data content displaying. (The example will use ‘getversion’ function).

Input Data E|
Input File
| [Edit

I}0 Data
10000000 00 06

Figure 3-3 Output Data

Once the code is successfully compiled, it could be downloaded to the card by using the discussed
method in previous section. Now, if you open IDE tool to browse the real devices, you could find
a file with its name and ID are 2000. When the file is executed, it could dynamically fetch the files

10

it needed, and return the corresponded results.

... ID =3 K ES B TE
3] 2F01 FF 11 0o FiIH 0
=000 2000 FF BE3 00 CIEZE N T

Figure 3-4 Files In The Real Card

i BE
00 31 30 30 35 30 33 38 32 CEEETRN o
08 31 31 31 33 35 35 31 o SR
15 =%
{RIFHEH (2)
MICHER (L)
i FRaE EAE (F)
i EE
R Bk
0031 30 30 35 30 33 31 39
02 3% 32 31 31 31 33 35 36 FETh (0. 001%E)
10 31 35
I BN (D
13
BT)
EEET 1 C FIEFR , I0RTE AR, ([EEEA " EASEAHCE" 0
%g;ﬁfg)\ﬁﬂ ESERLA " R EERCE T . AEEREL TR . B
Hzh

Figure 3-5 Simulated Executions

Now, click “Browse Real Device” button from the tool bar, then you could find the file. Once you
have finished all previous steps, a communication module needs to be created for communicating
to the card.

3.5 Editing and Encrypting Dongle Intercommunication Program

The steps for executing a dongle file:

Search Open Input Data oy Gat Chatput
Deavice Device Setting Data

11

Figure 3-6 File Execution Steps

Below is configured API that is used for communications between application programs and
ROCKEY6 Smart dongle:

EXTERN_C int WINAPI DIC Find(DWORD UID);

The function is used for dongles attached to PC based on the user code, and returns the total

numbers of attached dongle devices.

EXTERN_C int WINAPI DIC_Open(int hic, char* reader name);

Open a dongle from its index, and return the handler of the dongle

EXTERN_C int WINAPI DIC_Command(int hic, int cmd, void* cmddata);

Send commands to the dongle. The first parameter is the handler of the dongle; the second
parameter is command macro; the third parameter is the inputting/outputting structures for
command macro

DIC Set and DIC Get are described in details at <<User Manual>>. Please note that those two
functions are not used for any dongle operations. They are simply used to set a buffer. The address
of the buffer would be transferred to the 3rd parameter of the function DIC_Command. This buffer
is the needed structure. For all ‘struct’ supported C languages are not necessary to use those two
functions. According to the definition of the function DIC_Command, those languages could
directly work on the various structures based on different macros. The purposes of those two
functions are to help the users to configure complicated data structures; especially those languages
are not supporting the ‘struct’ such as VB etc.

Below is an example converting the ‘ConvertID’ to the function that could communicate with

dongle:

1 void ConvertID(const char ID[15],char newID[18])

2

3 DICST Before Run_Data *bD=(DICST Before Run_ Data *)new char[48];
4 DICST After Run Data *aD=(DICST After Run Data *)bD;

5 int count=DIC_Find();//Search dongle

6 int hic=0;

7 for(int i=0;i<count;i++)

8 {

9 if((hic=DIC_Open(i,NULL))>=0)

10 break;

11 }

12 if(hic==count)

13 return; //Card is not found

14 bD->RunID=0x2000;// Set the executable file name

15 bD->ParaSize=15;//Input the length of buffer

16 memcpy(bD->Para,ID,15);// Input buffer

17 int ret=DIC_Command(hic,RUN,bD);//Run the file and wait for the return data
18 memcpy(newlD,aD->Result,aD->ResultSize);// Get return data

12

19 3

Now, the entire project protection work is done. The newly formed interface is the same as the
previous one, and it doesn’t need to be modified for execution.

3.6 Core Code Selection

From above example, we have introduced a fundamental software encryption protection method.
This example is quite simple and used for describing the idea only. Please do not use it directly in
your protection. Based on our data, lots of users are using dongles for only searching if they are
attached to the PC, or only store a piece of dispensable code inside the dongle. Dongles used in
these ways could not protect your software well. We would recommend our users to take more
time for configure their dongles. Below are some important principles and methods used for
dongle applications.

1. Code inside the dongle has to be vital.

This part of code has to be saved inside the dongle. Nobody could get it without the valid
verification procedures. The main program could not be executed entirely and successfully
without this vital part of code. As a result, even some crackers attempt to avoid this piece of

code, the whole program cannot be executed successfully.

2. Try to choose the specific code that related to your application

Since the popular algorithms are well known, the software crackers could easily ‘guess’ the
functionalities of the code and simulating them to crack the software. Based on a fact that
most our clients are the skilled software programmers in their own software applications, we
would recommend our clients to add their own special codes in the dongle. It is impossible
for a cracker to know all the codes from various application fields. Thus, the dongle with the
special code would be too hard to be broken for a cracker. For example, a graphic
programmer could use part of code from the graphic processing software in the dongle; a PC
games programmer could use part of code form the artificial intelligence algorithms; a
mechanical engineer could use part of code from the mechanics algorithms etc. In this way,
the dongles would have dynamical diversity for its security algorithm applications. It would
make the cracking job too hard to accomplish.

3. From the performance aspect, do not give the heavy work to the dongle.

The code inside the dongle would be executed within the dongle. Since the speed of dongle
microprocessor is slower than the PC CPU, from this point, dongle usually is a bottleneck for
entire computation. Therefore, do not input the dongle code to an executing game,
‘ONMOUSEMOVE’ of the interface program etc. Please try to use this piece of code safely.
Once it is correctly used, even with some complex computation, the whole system might be
slow but won’t be crashed.

3.7 Conclusion

From above, we have discussed the fundamental methods for using the software protection dongle.

13

Moreover, we also showed how to separate and convert the code into C language. Finally, we
described how to arrange the main program and communication modules of the smart card, as well

as how to choose core code in the dongle.

Again, please take more time for programming your dongle software. It would be crucial for

protecting your software.

14

Chapter4 IDE Application

IDE is also a tool for card settings and program burning in bulk. In this chapter, the common
functions of IDE would be introduced. If you need further information about IDE, please refer to
the <<User Manual>> and <<Advanced User Manual>>.

4.1 Formatting a card

Formatting is used for initializing the system and clearing the existing data in a card. In
ROCKEY6 Smart, format could be also used for resetting the extensive libraries. Once the
connected real card is found, click “Card Operation -> Format” in the main menu. A pop-up
window would be showed as the Figure 41 below. In the window, the users could fill in and
update the volume and manufacture information. If the ROCKEY6 Smart expansive libraries need

to be imported, please select relevant items in the window. The last thing is click [OK] to start
formatting.

Format §|

Volume DEFAULT YOLUME

Makerinfo | DEFALLT ATR

RESADES Yes Extended floating pointyes
Ifload ESA_DES library?

Ifload extended floating (Extend Floatysupport?

Faormat the file systerm. The maker infa is a string no
longer than 15 chars, and no maker info means the
default value. Wolume is no longer than 16 chars.

(oL {8}] Cancel{Z)

Figure 4-1 Formatting
4.2 Burn in Bulk

“ Bun in Bulk” is usually used after the dongle protection programs are finished and just before
the dongle release date. It will import all files of the virtual card into the real card. Once switch to
the virtual device window, please choose “Selected Burning” for the intended files from the virtual
card. Then click “Burn to The Real Card” from the “Card Operation” menu. A pup-up window
will be showed as the Figure 4-2 below:

15

Burn multiple cards

)

Remaote update initial settings
Virtual file | cpnDeskioplCa1 ToolsiTestver |

[] Gonfig remote update settings
Murber | 0 |

Updateflay | |
Valume | DEFAULT YOLUME | EEESN | |
Maker info | DEFAULT ATR | Refurn status | |

Support READES Yes Support extended floating paintyves
[¥]Ifload RSA_DES library

[CIiflaad floating (Float library
Ifload extended floating (Extend Float) support

Prepare for burning

Burn Close

Figure 4-2 Burn in Bulk

‘Burn in Bulk’ could be also used for formatting the card. Therefore, it is also necessary to set
“Volume” and Manufacturer Information” and the extension libraries for the ROCKEY6 Smart
dongle. Its configuration is the same as the formatting. Additional, ‘Burn in Bulk’ could be also set

the remote update tag. For the remote update tag usages, we will describe it later. Users could also
find it from <<User Manual>>.

4.3 Program Debugging

Debugging is a basic function for the software development. Keil also supports powerful
debugging functions, such as ‘break’ and ‘step’ etc. Debugging in C51 project, please use tool bar
“Break” button (F9), then use tool bar “Run” (F5). After those two steps, the program debugging
would be started. It is showed as Figure 4-3 below:

16

i turl — #Eision? — [Disassembly]

@ File Edit ¥iew Project Debug Flash Peripherals Tools SVCS Window Help _ |E| X|
B =] Y char | ~ | 44
@ @ DE | Mg
HEOBR » = =
Bk C:0=z0000 0zo11o0 LJMF C:0110 ~
Register | Value |A 8: wold main(vold)
=l Regs 9 X
¥ D00 10: byte is;
rl 000 11: int 1i;
¥ 0x00 12: word filelD:
r3 0x00 13: byte ret=0;
r4 000 14:
:g gigg 15: byte zdata info[33];
s i =>C 1020003 E4 CLR A
-l Sys — C:0=z0004 Fsoc MOV 0xz0C,A
a 0x00 16: get_input{info, 0, 0, 33):
b 000 17:
sp 000 hd C:0=z0006 750001 MOV ?_WRITE_FILE?BYTE (0xz0D),#0=01 o
Fi|es (n.n_.nnnn AT an EoTr [Tk o TY P])
ﬂ Load ”C:\‘ﬂ ﬂ Hame Value ﬂ ddress: |i:D H
i 00000 I:0z00: 00 0O OO 0O OO OO 00 oo
fileID 00000 I:0z08: 00 0O OO0 0O OO OO 0O 0O
ret 000 I:0z10: 00 00 OO0 0O OO OO 00 oo
5 # info X:0:000000 [...] I:0x18: 00 00 00 0O 00 00 00 OO0
ASM I:0z20: 00 00O OO OO 0O 0O 00 00
H H 00 oo oo h
1 4 [<]»]M] Locals A watch #1 ; Watch#2) P | M\ Memory 21 A Memory#2 A Memor
Ready b1/ RAW

Figure 4-3 Debugging

In the process of debugging, the data in the register and RAM will be displayed. The ‘run in step’
function is also available at this time (F10) (F11).

17

Chapter S Basic Programming Techniques

In this chapter, we will introduce the basic programming techniques for ROCKEY6 Smart. It
includes card internal files processing, double precision floating-point calculation, RSA and DES

computation etc.

5.1 File Reading and Writing

File reading and writing are the basic techniques for programming a dongle. If there are huge
amount of data, they need to be handled efficiently. There are two types of files in the ROCKEY6
Smart, data file and executable file. The executable file is the downloaded file inside the dongle
(such as the file ‘2000’ in previous chapter). It could be executed by the COS. In contrast, the data
file includes normal file and internal file. The normal file could be read out and written in. It is
usually accessed by the external application program via the API or card program via system calls.
However, the internal file could be only accessed by the card internal executable files. Below is
the files access control diagram. In most cases, the external program accesses the normal files
after successfully password verification is only used for management. At the actual software
protection project, the application program accesses the internal files mainly via the internal

executable files. The access authorities are managed by the card executable files.

Extarnal

Apphication

Progam
—Fead and Whrate

Exemtins

Smart Card
¥ Exemtable Files

L Fead and Write

| Fead alid Write
Mornmal Files Internal Files

Figure 5-1

Now, we will describe the methods of file reading and writing in C51.

1. Creating file — The system call for creating file could be performed by ‘create file()’. Its
prototype is showed below:
unsigned char creat file(unsigned short wFileID,unsigned char pbFileName,unsigned char
bAttrib, unsigned short wSize);

18

wFilelD: File/Directory 1D
bAttri File/Directory attributes and their security levels
wSize File length (counted in byte, if it is directory, the parameter is 0) parameter
pbFileName: File/Directory name buffer
(could set to 0, it means not to use the file name)

Return: Return code

Below is the simple code for creating file:

void main()

{
byte ret;//Define word type variable. It is used to hold the return code.
ret = create_file(0x1002, "1002",0x80,1024);
// create file with ID to 1002, internal security level to 0,
//size to 1024 bytes and name to 1002
set_response(1l,&ret); //output the return value for CreateFile
exit();
}

In this part of code, a file with ID to 1002 is created. Alternatively, the file ID, size and the

other information could set to variables.

2. Reading file — reading file is performed by system calling ‘read file()’. The definition of
‘read_file()’ is defined as follows:

unsigned char read file(unsigned short offset, unsigned char *pd,unsigned short lenth);
offset: Offset position for the data to be read

pd: the buffer pointer, the place data stored

length: The length of the reading data

return: Return code

Additional, before reading and writing a file, please open file first. The system call for
opening a file is ‘open_file’. its definition is showed below:
unsigned char open_file(unsigned char *pd,unsigned char open_mode);
pd: the pointer points to the file name or file ID
open_mode: open mode
00 indexing by file/directory ID (points to file/directory ID, the lower bytes
is in the left)
01 indexing by file/directory names (points to file/directory name)
02 directly open the upper directory. If now ‘pd’were NULL or other values,
it would be ignored.

return: return code
The following methods could be also used to open and read a file:

#include "sys_api.h"
#include <string.h>

19

void main(void)

{
byte xdata is;
word xdata filelD;
byte xdata result[50];
byte xdata info[2];

get_input(info,0, 0,2);

memcpy(&filelD, info, 2);

is = open_file((byte*)&fileID, 0); //Open file by the ID

is = read_file(80, result,20); //Reading 20 bytes from the file offset position 80
set_response(20, result);

exit();

3. Writing file — the system call for writing file is ‘write file’. Its function definition and usage

are similar with ‘read file()’. Please refer to <<Advanced User Manual>>. It is omitted here.

4. Deleting file — the system call for deleting file is ‘delete file’. This function doesn’t contain
any parameters. It is used for deleting current file. Firstly, open the file to be deleted. Then
call this function to delete the file. The following code will perform the deletion according to
the inputted ID.

void main()

{
word FilelD;
byte Ret;
get_input(&FilelD,0, 1,1);

Ret = open_file((byte*)&FilelD,0);
if(Ret!=0)

exit();
Ret = delete_file();

5.2 Floating Point Computation

ROCKEY6 Smart dongle provides hardware accelerated double precision floating-point
computation. The variables in ‘double’ type cannot be processed in adding, subtracting,
multiplying and dividing erations. They can be only operated in floating point functions. For
example, in double type, “c = a + B’ must write to ‘c = double add(a,b)”. The floating-point
functions for adding, subtracting, multiplying and dividing are listed below:

unsigned char double add(unsigned char * al,unsigned char * bl,unsigned char *result);

unsigned char double sub(unsigned char * al,unsigned char * bl,unsigned char *result);

20

unsigned char double mul(unsigned char * al,unsigned char * bl,unsigned char *result);
unsigned char double div(unsigned char * al,unsigned char * bl,unsigned char *result);

Besides the basic operations like adding, subtracting, multiplying and dividing, the floating-point
calculation system also includes trigonometric functions, anti-trigonometric functions, square root
functions, logarithmic functions and other commonly used mathematic functions. For their details,
please refer to the Appendix of <<Advanced User Manual>>. Additional, before using the
function, please make sure that the following two libraries are imported into the dongle (if you
don’t use the floating-point libraries, then importing those two libraries are optional.) — floating

point library and extensive floating-point library.

Format El

Volume DEFALILT YOLLUME

Makerinfo | DEFALLT ATR

Floating computation

RSADESYes Edended floating pointyes
Ifload ESA_DES library?

Ifload extended floating (Extend Floatysupport?

Format the file systern. The maker infa iz a string no
longer than 14 chars, and no maker info means the
default value. Wolume is no longer than 16 chars.

(o] {0)] Cancel{Z)

Figure 5-2

The following is an example of floating point multiplication by using the dongle:

void main()
{
byte Ret;
byte a[8];
byte b[8];
byte c[8];//Used for output floating point ¢
byte input[16];

get_input(input, 0, 0, 16);

memcepy(a, input, 8); //input a
memcepy(b, input+8, 8); //input b

21

Ret = double_mul(a, b, c);

if(Ret!=0){
set_response(1,&Ret);
exit();

H

set_response(8,c);
exit();
}
Using this function in the main program:
double double mul(double a,double b)
{

double c;
DICST Before Run_Data *bD=(DICST Before Run Data *)new char[24];
DICST After Run Data *aD=(DICST After Run Data *)bD;
int count=DIC _Find();
int hic=0;
for(int i=0;i<count;i++)
{
if((hic=DIC_Open(i,NULL))>=0)
break;
}
if(hic==count) return 0;
bD->RunlD=0x2008;//assign the file ID used for floating point computation
bD->ParaSize=16;//input 16 for the buffer size
memcpy(bD->Para,&a,8);//set the first floating point number
memcpy(bD->Para+8,&b,8);//set the second floating point number
int ret=DIC_Command(hic,RUN,bD);//Run
memcpy(&c,bD->Result,8);//get the result

return c;

The following is the execution result for the program. The result of the dongle multiplication
would be the same as the PC:

22

ov “D:\AZE\double\Debugidouble. exe”

Rockey: B.3542+%2234_33=791.399686
PG: B.3542=2234.33=791.399686
Press any key to continue

Figure 5-3

5.3 Encryption and Decryption

Encryption and decryption are the ROCKEY6 Smart internal algorithms by using the hardware
microprocessor computation. This would get better execution efficiency, correct calculation and
prevention of user tracking and debugging.

5.3.1 DES Encryption

DES encryption needs to save the keys in the card file before doing anything else. A key file could

include many keys. When encrypting, different parameters could use distinguished keys.

Encryption - when encryption, the program inside the card could call ‘des enc’ function to
perform encryption. The application programs may also call ‘DIC_Command’ and transfer a

‘DESENC’ macro to perform encryption.

Decryption — when decryption, the program inside the card could call ‘des dec’ function to
perform decryption. The application program may also call ‘DIC_Comman’ and transfer a

‘DESDEC’ macro to perform decryption.

To use DES encryption and decryption method, a key file needs to be created firstly in the dongle.
The layout for the key file is: every key is 10 bytes long; in which, key ID is 1 byte (8 bits), the
parameter of the key length is 1 byte (8 bits), the key is 8 bytes. In this way, when the DES key
file is created, it is assigned 10 bytes as one unit each time. When encryption, system call and/or
API need to set a key ID as a parameter. The key ID is used for determining which key is chosen.
For example, the following code will write two keys to a created key file. The key ID is 01 and 02.

memcpy(data,"\x01\x08\x01\x02\x03\x04\x05\x06\x07\x08",10);
//data is a temporary buffer area
DIC_Set(cmddata, WRITE DATA, 10, 0, (char*)data);//set data length 10, offset 10

23

memcpy(data,"\x02\x08\x 11\x12\x13\x 14\x15\x16\x17\x18",10);
DIC Set(cmddata, WRITE DATA, 10, 10, (char*)data);//set file offset 10
errcode = DIC_Command(hic, WRITE FILE, cmddata);//write to the current file

Encryption — let’s briefly take a look the method for API encryption and C51 encryption. API
encryption is showed as the following program. It sends the plain text into the card and set the key
ID.

DIC Set(cmddata,DES KEYFILEID,0,0x6F01,NULL);//set key file ID

DIC_Set(cmddata,DES KEYINDEX,0,0x01,NULL);//set key ID

//set plain text

DIC_Set(cmddata,DES DATA,BY ARRAY | dataLength,0,(char*)DesData);

errcode = DIC_Command(hic, DESENC, cmddata);//encryption

//get encrypted text

wRet = DIC_Get(cmddata, AFTER ENCDEC DATA, BY ARRAY, (char*)outData);

C51 Encryption:
C51 encryption is similar to the API encryption. It needs to call ‘des_enc’.
des_enc(fileID, keyID, 8,data);

Decryption, the decryption process is similar with encryption. The following code shows on how
to use API and C51 to encrypt data:

DIC Set(cmddata,DES KEYFILEID,0,0x6F01,NULL);//set file ID

DIC Set(cmddata,DES KEYINDEX,0,0x01,NULL);//set key ID

DIC_Set(cmddata,DES DATA,BY ARRAY]| datalLength,0,outData);

//set encrypted file

errcode = DIC_Command(hic, DESDEC, cmddata);//decryption

//set plain text

wRet = DIC_Get(cmddata, AFTER_ENCDEC DATA, BY ARRAY, (char*)DesData);

C51 decryption needs to call ‘desDec’function as showed below:

des_dec(filelD,keyID, 8,data);

5.3.2 RSA encryption and decryption

When performing RSA encryption and decryption, the RSA key pairs need to be created firstly.
Key creation could use ‘DIC_Command’ API and transfer a ‘RSAGENKEY’ macro and filling in
the ‘RSA_GEN KEY structure. Before performing this operation, please make sure the
ROCKEY6 Smart super password is verified. If the key pairs are created dynamically at client
side, then the executable files created by C51 need to call ‘rsaGenKey’. The prototype of
‘rsaGenKey’ is rsaGenKey(publD, size, prilD) : callAddress;

PubID refers to the public key file ID

PrilD refers to the private key file ID

Size refers to key size (512 or 1024)
If the card doesn’t store the private key file, then creates it. The created private key file will be

24

inside the card; and it can be only used for computation within the card. Below are the steps for
RSA encryption and decryption:

Creating key pairs — when the key pairs are creating, a public file ID, private file ID and the length
of the key size need to be set (such as 1024 and 512).

API creates key pairs:

DICST Rsa GenKey keyData;//creating a struct for the key pairs
keyData.pubKeyID=0x1002//set public file ID
keyData.pubKeySize=0x1004;//set the length of the key is 1024
keyData.pivKeylD=1024;//set private key file ID

Ret = DIC_Command(Hic, RSAGENKEY, keyData);//creating key pairs

Creating the key pairs in C51:
Rsa_gen key(0x1002,1024,0x1004);

API encryption and decryption

//RSA encryption

RSA KEYFILEID, BY VALUE, 0x7f01, NULL); //public key encryption
DIC Set(cmddata, RSA DATA, BY ARRAY | 128, 0, dataSrc);

errcode = DIC_Command(hic, RSAENC, cmddata);

//RSA decryption

DIC Set(cmddata, RSA KEYFILEID, BY VALUE, 0x7f02, NULL);
DIC Set(cmddata, RSA DATA, BY ARRAY | 128, 0, EncData);
errcode = DIC_Command(hic, RSADEC, cmddata);

C51 encryption and decryption
//encryption
byte data[128];

rsa_enc(0x1002,128,data);
//decryption
byte data[128];

rsa_dec(0x1004,128,data);
When performing RSA and DES encryption and decryption, this library has to be
imported. If the program doesn’t need it, then importing the library would be optional.

5.3.3 TDES Encryption and Decryption

TDES encryption and decryption are similar with the DES. The only difference is its parameter of
length is 16. In order words, the second byte of the key must be 16. For the details of the TDES

25

encryption and decryption, please refer to ‘samplel4’.

x]

Format

Volume DEFALILT YOLLUME

Makerinfo | DEFALLT ATR

RSA_DES@

Ifload extended floating (Extend Floatysupport?

RSADESYes Edended floating point
Ifload ESA_DES library?

Format the file systern. The maker infa iz a string no
longer than 14 chars, and no maker info means the
default value. Wolume is no longer than 16 chars.

(o] {0)] Cancel{Z)

Figure 5-4

5.4 Function Expansion

The Function Expansion is used for expanding the APDU. In other words, it encapsulates and
expands the current APDU commands by using the executable files. The executable file is the
filtering file. By using this feature, the developers could redevelop and customize their own APDU
to the dongle. Please refer to the Chapter7 of <<Advanced User Manual>> on how to use the
APDU filtering.

5.5 Dongle Identification

In some cases, a user might use different kinds of dongles in the same PC. It is possible to cause
problem if the program doesn’t have the control function. One solution for this problem is calling
‘DIC_Command’ and transfers a ‘GET MANAGER CODE’ macro and a

‘DICST ManagerCode’ struct (it refers to a management code, including zone code, reseller code

and 2 user code). From that information, we could determine if our dongle is being used.

Another method is using management information to find connected dongles. That is, we use
‘DIC_FindBuyMgrCode’ function to transfer a ‘DICST ManagerCode’ struct when searching
dongles. The return value for ‘DIC_FindByMgrCode’ is the dongle handler for such manufacturer.
Now, we introduce how to find and open ourselves’ dongle only, when we perform the open

operation.

Definition of DIC_FindByMgrCode:
EXTERN_C int WINAPI DIC FindByMgrCode(DICST ManagerCode *pMgrCode);
The “pMgrCode” in parameter presents the struct pointer for matching ‘DICST ManagerCode”’,

26

and searching by using the management information. Please try to use this method when the
software system is released in order to avoid conflict with the other manufacturers.

DICST ManagerCode m_Code;

int i=0;

int hic=0;

//struct initialization,

//here the estimated data needs to be replaced by the real data

m_Code.Zone=0x01;

m_Code.Agent=0x02;

m_Code.User1=0x03;

m_Code.User2=0x04;

int Count = DIC_FindByMgrCode (&m_Code);

for (int i = 0; i < Count; i++)

{

hic = DIC_Open (I, NULL);

if (‘hic >= 0) break;
}
if (hic <0 | hic==1)
{

//the card is not found for operation

H

//next operation

5.6 Multi-thread Support

In many cases, it is necessary for many programs executing concurrently, and accessing the
connected dongle independently, such as Background/Silence based server side program is
designed to execute in a multi-thread development environment. A program can access the dongle
via distinguished programs at the same time. This requires the dongle supporting multi-process
and multi-thread programs. For those dongles that don’t support multi-thread program, they have
to use software to deal with this situation. There are numbers of interfaces designed for supporting
multithread program in the API interface library. To use them, all you need to do is calling the
function ‘EnterMultThreadMode’ before using the dongle. After calling the function, whenever the
other programs open the dongle or the dongle is closed, the current program would execute
correctly without any influences. When the other programs call this function and put all program
processes into a process queue, all queued processes have to wait for the executable resource in
order. At the same time, many processes could share the same dongle, and the dongle is in the
processing sharing state. For example, when the security level for COS and the super password
verification state, (There is not super password verification state in the client side) those processes

can be performed in any process states.

27

Chapter 6 Software Release Management

6.1 Using Times Limitation

Using times limitation is commonly used for software testing. The software developers could use

this function via the following steps:

(M

)

3)

4

Before the developers release the dongle’s demo version, they have to set the using times via
APL

There is required to have an executable file ‘A’ in the dongle. It is called every time when the
software is using. In every execution time, the software will call the function ‘step_counter’,
and deducting one from it. Please note, the program cannot only call ‘step counter ’ function,
the function must be called with the other functions or embedded with the other functions.
Otherwise, it is not hard for a cracker to find the time counter function and avoid using it.
Every time the software in the PC is called, the executable file ‘ A’ will count itself once. Once
there is only one time left for using, a pup-up window will be showed to inform the user the
software is only one time to use. If the user choose ignoring the message and not to make the
purchase, the software will be locked automatically after the last time using.

If the user wants to register the software, there are 2 ways to modify the time counter in the
dongle. One way to do that is sending the dongle back to the manufacturer. Once the dongle is
successfully passed super password verification, set the counter to zero. Another way is
removing the function ‘step counter’ from the program ‘A’. Then using ‘Remote file transfer’
function to replace the executable ‘A’. Now, since the ‘step counter’ is removed and the
executable file * A does not deduct any more, the software could be used without any times

limitation.

6.2 Using Time Control

Using time control requires the developers to work on the internal data file to perform it.

Data file is used for (internal file can only be accessed by the internal executable file) storing time.

Its accuracy is in millisecond. It has 4 bytes for saving 2 time points: ‘current time’ and ‘end time’.

The developers need to put system time parameter into the dongle in all programs, and add the

following code to the program header. The purpose of the following code is opening data file, and

fetching the ‘current time’ and ‘end time’. If the inputted time is larger than the ‘end time’, then

the program will run, otherwise, it will prompt error message.

dword pcTime;

dword currentTime; //current time

dword endTime; //end time

byte datal[8];

dword fileld=0x1100;
get_input(&pcTime,0,2,1);/input time
open_file(&fileld, 0); //open file

read file(0, datal, 8); //get the 8-byte file data
memcpy(¤tTime,datal,4);

28

memcpy(&endTime,datal+4,4);
if(pcTime > endTime)
{
exit(); //time ends, returning without execution
}
if(pcTime < currentTime)
// Time error, the current inputting time is less then the previous time.

{

exit(); //returns without execution

In addition, it has to have a program working as a ‘start program’ and ‘end program’. This
program would play an important role. The ‘start program’ is used for: calculating the end time,
replacing the current time with input time and starting the system clock. It is usually the first
program executed in the dongle. The part of the its code is showed below:

dword pcTime;

dword currentTime; //current time

dword endTime; /lend time

char datal[8];

dword fileId=0x1100;

get_input(&pcTime,0,2,1);//input time

open_file(&fileld, 0); //open file
read file(0, datal, 8); //get the 8-byte file data
memcpy(¤tTime,datal,4);
memcpy(&endTime,datal+4,4);
if(endTime == 0) //initialization, only executes once
{
endTime = pcTime+86400000; //a day is 86400000 millisecond
currentTime = pcTime;
H
if(pcTime < currentTime)
//time error, the current inputting time is less than the last time.

{

exit(); //return without execution
H
currentTime = pcTime;
memcpy(datal,¤tTime, 4);
memcpy(datal +4,&endTime, 4);
write file(0, datal, 8);
start_timer(); //starting the timer

The ‘end program’ is used for: ending the system clock and updating the current time with the
execution time + current time.

29

dword pcTime;

dword runTimer;

dword currentTime; //current time
dword endTime; /lend time

char datal[8];

dword fileld=0x1100;
get_timer(&runTimer);
get_input(&pcTime,0,2,1);/input time

open_file(&fileld, 0); //open file

read file(0, datal, 8); //get the 8-byte data
memcpy(¤tTime,datal,4);
memcpy(&endTime,datal+4,4);

currentTime = currentTime + runTimer;
if(pcTime > currentTime)

{

currentTime = pcTime;
}
currentTime = pcTime;
memcpy(datal,¤tTime, 4);
memcpy(datal+4,&endTime, 4);

write file(0, datal, 8);
exit();

After the users purchased the software, they could use the function ‘Remote File Transfer ’. Once
this function is used for replacing the executable function ‘A, the dongle could be used without

any limitation.

6.3 Function Limitation

Function limited software refers to the demo software that some of its functions are not available,
especially some of critical features; those missing functions or features are only offered at its
purchase version. If there are two function groups for software A and B, then group A is function
limited demo version, and group B is the full functional versions.

6.3.1 Using Dongle Only

Group A doesn’t have the function for calling the dongle internal algorithm. In contrast, group B
has it. Group A functions correlate group A1l algorithms in the dongle; group B functions correlate
group B1 algorithms in the dongle. If a user doesn’t use the full functional version of the software,
then some of the functions in the group B are not available. On the other hand, if a dongle is

purchased, then it is full functional version.

30

In this way, a developer could distribute the software freely. However, only those users made their

purchase could get full functional versions.

6.3.2 Using Remote File Transfer

‘Remote File Transfer ’ could be also used for the function limited demo version software. When a
user purchases a dongle, the group B1 algorithms could be downloaded into the dongle by using
the ‘Remote File Transfer’ function.

6.3.3 Using Remote Update Tag

‘Remote Update Tag’ could be also used for the function limited demo version software. It is
similar with “Using Remote File Transfer”. The group A1l algorithms and the group B1 algorithms
in the dongle are separately correlated in the group A functions and the group B functions
accordingly. However, those two group algorithms are all existed in the dongle. The ‘Remote
Update Tag’ is an indicator for distinguishing whether the dongle is demo version or not. That is,
the last bit of the tag is exactly the position to show this. Calling the ‘getRemoteTag’ function at
the beginning of the group B1 algorithms, then check if the last bit is ‘1’ or 0’. If it is “0’, ends the
function without execution. If a dongle is purchased, then it has to be remote updated at the first
time using it. The dongle developers will set the last bit of the tag to “1°. This would trigger the
group B1 algorithms executing normally. Please note that the first bit of the ‘Remote Update Tag’
should be also set to “1°. It is correlated with the dongle itself.

Assume there are a group functions named ‘A, and it is not available for anybody without the
proper access authorities. If functions of the group A correlate with the group A1 algorithms in the
dongle, then the dongle user must pass the password verification to use this function. The
password verification process is carried inside the dongle. If the password is incorrect, the

program will not be executed.

For the password, the PC is only an entry path. The password is actually stored and verified in the
dongle rather than in the PC. If a password is 8 bytes long, those 8 bytes data will be added in the
initial position of every input parameter. All the other data will be listed after those 8 bytes. The

following code is an example for the password verification:

dword inputKey[2];
get_input(inputKey,0,2,2);//get input password

/lyou could also use ‘memcmp’ for comparison
if(inputKey[0] != 0x12345678)//0x12345678 is the assumed password

{

goto end;

}
if(inputKey[1] = 0x12345678) //0x12345678 is the assumed password

{

end:

31

exit();
}

/lonce verified the password, a developer could write the functions here.

If the user is allowed to modify the password, then the password has to be saved in a data file
(must be an internal data file). And save the password back to the file once it is modified. It is also
possible for a data file used by many executing program. Let’s assume the password is 8 bytes
long. The first 2 bytes are the functional signs; the following is 8 bytes old password and 8 bytes
new password. The total length is 18 bytes. Password modification is an independent executable

program.

word option;

dword inputKey[4];//4-11bytes are the old password, 12-19 bytes are the new password
dword realKey[2];//get the real password from the card

dword fileId=0x1100;

//get input

get_input(&option,0,1,1);

get_input(inputKey,0,2,4);

if(option == 1)
{
open_file(&fileld 0);//assume the password is saved in data file with the ID =0x1100
read_file(0,(byte*)&readKey,8); //get the real password
if(inputKey[0] = realKey[0]){
if(inputKey[1] == realKey[1]){
write_file(0,(byte*)(&inputKey+2),8);

/Iwrite the new password into the data file

6.4 Multi-level Authorization Control

Assume there are two functions groups A and B. the user A0 could use both of them, and user BO
could only use function of the group B. Additional, the group A functions correlate with the group
Al executable programs in the dongle, the group B correlate with the group Bl executable
programs in the dongle. If assigning the same password to the executable program of the group Al
and B1, then the user A0 and BO can use the both function groups. However, if the group Al and
B1 assigned different password, then the user A0 has to inconveniently remember the both

passwords.

The ideal solution is: both the user A0 and the user B0 use the same password. Namely, the group
Al executable programs could be used under the same password. The group Bl executable
programs could be used under the 2 passwords. The executable programs group Al is using the

same password verification process like above. The password verification process for the

32

executable program group B1 is also simple. It actually checks two passwords to see if they are

identical. Below is an example with 8-byte assumed password:

dword inputKey[2];
get_input(inputKey,0,2,2);
if(inputKey[0] == 0xA1234567){ // check the password of A0
if (inputKey[1] == 0xA1234567){
goto right;

}
if(inputKey[0] == 0xB1234567){ //check the password of B0

if (inputKey[1] == 0xB1234567){
goto right;

}
exit();
right: //password is correct

//the other code goes here

33

Chapter7 Remote Update

‘Remote File Transfer’ is used for the developers to conveniently update their software system.
Assume a developer has sold lots of 1% version of their software; the users who used the 1%

version software will make the purchase and update to the 2"® version of the software.

In this update example, assume the algorithm used in 2" ¢ dongle is different with the algorithm in
the 1% dongle. Then the developers don’t need to replace the old dongle. All the developer needs to
do is to send the new algorithm to the user by using the ‘Remote File Transfer > function. From the
users side, the users need to download the new algorithm into the dongle via the ‘Create Plain

Text’ function.

Now, we are going to introduce some basic methods for remote upgrading, and then we will

describe them in details by showing some examples.

7.1 Multi-module Management

‘Multimodule Management’ refers to writing a numbers of code modules in a same dongle. The
PC programs contain the correlated modules too. In most cases, the users only purchase some of
the modules; the rest modules are purchased only if the users need them. In this section, we will
show how the developers to manage the sold dongle, and adding the dongle internal modules
without any modifications.

Actually, “multimodules” means the developers could divide software into many parts. Some of
them are used for the software demo version; the rest of them may be used in the full functional
purchase version. According to this, if we group all programs in the full functional version
software and combine with corresponded C51 programs to a module, then we can use the
following function to perform the module management. At the examples attached with this
Tutorial, there is an example looks like the below. The example shows the most of functionalities
of the Rocky6 Smart dongle. And it can perform the module management by using the remote
management tools provided by the ROCKEY6 Smart dongle.

34

&tu‘turial

X

Floating computatioen—Cubic

Input: [Output: 0 LOUBLE

Create key pair

Public Frivate Create RSA Hew

key - ey

Create file

File ID: File Size: 0 CreateFile

type:
frite file
File Offset: O Length: [WriteFile
In:
Read file

File Offzet: 0 Length: O FeadFile

DEZ enecryptionddecryption

File Key ID: [Encrypt Bun Des

BE3A encryption/decryption

Fublic Frivate [~ Encrypt Fun ESA

ey IN: lrey I0:
Dlata

00000000 00 00 00 00 00 00 00 00 00 00 00 00 co.oeevennnns
oo00o000c 00 00 00 00 00 00 00 00 00 00 00 00 co.eevnnnnns
00000018 00 00 00 00 00 00 00 00 00 00 00 00 (... eeenns
00000024 00 00 00 00 00 00 00 00 00 00 00 00 co.oeevnnnnns
00000030 00 00 00 00 00 00 00 00 00 00 00 00 co.eevvnnnns
0000003C 00 00 00 00 00 00 00 00 00 00 00 00 co.oeevvennns

Cancel

Figure 7-1

7.2 Using Remote Update Tag

This method is designed to handle the situation that the total number of the modules in the dongle
is less than 32. A ‘Remote Update Tag’ is a 4-byte binary value. The 1" bit on the left (the Most
Significant Bit) is used for expressing if the remote update is related with the hardware. The rest
of 31-bit is available to use. There is 1-bit out of the 31-bit used to represent the initiation state for
a module.

For example, if the last bit (the Less Significant Bit) is used for representing the initiation state for
a module 1; ‘0’ means 1o initiated; ‘1’ means initiated. After the module 1 corresponded C51
program in the dongle accepting the input data, use ‘getRemoteTag’ function to get remote update
tag. And then check if the last bit is “1°. If it is ‘0’, then return it without execution; otherwise,

execute it.

Once a user purchases a dongle and needs to buy a new module, he/she needs to send the dongle

remote update tag to the developer. The developer will set the value of the module to ‘1’ after

35

receiving the user’s tag; then generate a new remote update password and send back to the user.
The user could use the new module after applying the received update file.
In the example of this Tutorial, every example’s entry point contains the code similar to the
following:
Ret = get remote tag(&remoteTag);
remoteTag&=0x01;
if(remoteTag==0)
{
set_response(1,&Ret);
exit();

This piece of code is used for getting the remote update tag from the program, and getting its
initiation bit position from the 31-bit to determine if the program will continuously execute. If
there is not proper initiation bit position found from the 31-bit, then the program will pup up an

error message and quit without execution. So, it is the way to perform the module management.

7.3 Remote Module Management

If a developer write the numbers of module greater than 32 in the dongle, then the ‘Remote
Module Management’ function is used to handle this situation. The ‘Remote Module

Management’ could be set by using the dongle IDE configuration and remote user settings.

& ROCKEY Smart IDE v1.00.05.0512 - Virtual card (Test) (=13
File{F) Edit{E) Wiew(w) Card operation{C) ToaolsiT) Window(W) Help(H)

g = E é ' Remote Module Manager _ ! ?

- Virtual card (Test) Operation Typs

() Define Module (O nthorization Module
-] Test.vcr
.qm DEFAULT UVOLUME File Path
| Add Module
Module List
Modle: |1
Module Hal
Fe: |
£ 1l] =]
|[Cancel] |['de.ate to Caxd} |[Create Fila]
|
|
Ready file info row , column Scroll _I
Figure 7-2

To config the local ROCKEY6 Smart dongle for its module management, we need to add the

dongle files into the list, set the open/close states, and update the device.

36

To remotely manage modules, the developers need to generate amodule definition file. The users
will create their own module request file according to the module definition file. And then the
users will send the module request file back to the developers. Once the developers receive those
files, they will generate the module authorization file and send back to the users. When the users
receive and apply those authorization fils, the remote module update precess is accomplished. For

the details of module management, please also refer to <<User Manual>> and ‘client side tools’.

37

