ROCKEY6 SMART User Manual V1.3

ROCKEY6 SMART User Guide

Version 1.3

Copyright © 2002-2007 Feitian Technologies Co., Ltd.

http://lwww.FTsafe.com

http://www.ftsafe.com/

ROCKEY6 SMART User Manual V1.3

Feitian Technologies Co., Ltd.

Software Developer’s Agreement

All Products of Feitian Technologies Co., Ltd. (Feitian) including, but not limited to, evaluation
copies, diskettes, CD-ROMs, hardware and documentation, and all future orders, are subject to the
terms of this Agreement. If you do not agree with the terms herein, please return the evaluation
package to us, postage and insurance prepaid, within seven days of their receipt, and we will reimburse
you the cost of the Product, less freight and reasonable handling charges.

1. Allowable Use — You may merge and link the Software with other programs for the sole purpose
of protecting those programs in accordance with the usage described in the Developer’'s Guide. You
may make archival copies of the Software.

2. Prohibited Use — The Software or hardware or any other part of the Product may not be copied,
reengineered, disassembled, decompiled, revised, enhanced or otherwise modified, except as
specifically allowed in item 1. You may not reverse engineer the Software or any part of the product or
attempt to discover the Software’s source code. You may not use the magnetic or optical media
included with the Product for the purposes of transferring or storing data that was not either an original
part of the Product, or a Feitian provided enhancement or upgrade to the Product.

3. Warranty — Feitian warrants that the hardware and Software storage media are substantially
free from significant defects of workmanship or materials for a time period of twelve (12) months from
the date of delivery of the Product to you.

4. Breach of Warranty — In the event of breach of this warranty, Feitian’s sole obligation is to
replace or repair, at the discretion of Feitian, any Product free of charge. Any replaced Product
becomes the property of Feitian. Warranty claims must be made in writing to Feitian during the
warranty period and within fourteen (14) days after the observation of the defect. All warranty claims
must be accompanied by evidence of the defect that is deemed satisfactory by Feitian. Any Products

that you return to Feitian, or a Feitian authorized distributor, must be sent with freight and insurance

ROCKEY6 SMART User Manual V1.3

prepaid.

EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY OR REPRESENTATION OF THE
PRODUCT, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. Limitation of Feitian’s Liability — Feitian’s entire liability to you or any other party for any cause
whatsoever, whether in contract or in tort, including negligence, shall not exceed the price you paid for
the unit of the Product that caused the damages or are the subject of, or indirectly related to the cause
of action. In no event shall Feitian be liable for any damages caused by your failure to meet your
obligations, nor for any loss of data, profit or savings, or any other consequential and incidental
damages, even if Feitian has been advised of the possibility of damages, or for any claim by you based
on any third-party claim.

6. Termination — This Agreement shall terminate if you fail to comply with the terms herein. Items

2, 3, 4 and 5 shall survive any termination of this Agreement.

ROCKEY6 SMART User Manual V1.3

PREFACE

ROCKEY6 SMART dongle is a newly developed powerful security product from FEITIAN
Technologies. It is a smart card kernel based USB device that combines software protection dongle and
smart card technologies in a very small form factor. It supports multiple applications including software
protection, personal identification and authentication, data security and protected electronic
transactions. This manual will guide you on how to use ROCKEY6 SMART to protect and encrypt your

products.

PART1 Fundamental Section
All ROCKEY6 SMART special features, functions and basic concepts for software protection will

be introduced in this chapter, providing you with a general overview on this product.

PART 2 Application Section
After completing this chapter you will know how to use Keil u Vision2 to compile the kernel of your
encrypted application and choose the corresponding API function. You will also learn the development

procedure of ROCKEY6 SMART.

PART 3 Advanced Section

This chapter will introduce RSA, DES encryption algorithms and how to work with APDU and COS
(Card Operation System). After completing this chapter you will not only upgrade to a further level of
using ROCKEY6 SMART to protect your application but you will also master the advanced encryption

management.

ROCKEY6 SMART User Manual V1.3

PRENOTE

(1) The initial super password of ROCKEY6 SMART demo dongle is 8 bytes: FF FF FF FF FF FF
FF FF. The retry times limit is 15 i.e. the smartcard will be locked after 15 times continuous
unsuccessful verifications. If the dongle is locked, it must be returned to the manufacturer to be
repaired. Super password needs to be verified before the advanced operation like generating or
deleting executable files or internal files, formatting dongle, generating remote update file etc. Please

keep the super password safe. Do not include it to the encrypted program and never show it to others.

If change the super password to eight 0x00 (i.e. 00 00 00 00 00 00 00 00), the smartcard will be
locked. In this case, no files can be imported to the dongle any more. Only the executable files can be
called. Using initial super password in development is recommended. This can prevent the smartcard
being locked unexpectedly. Once the smartcard is locked, there will be no way to unlock it, even the
manufacturer can not fix the password or unlock the dongle. This design can guarantee maximum

security performance.

(2) When ROCKEY6 SMART is inserted, the flash disk icon will be displayed in the task bar. User

can unplugged the dongle directly when finish using.

(3) When attached ROCKEY6 SMART dongle to the computer, if the light of the dongle blinks, this
indicating a connection error. Please check the operating system status, the USB port connection. In
Windows98 system, please check is the driver installed properly. Switching to a different USB port or

test with a flask disk may help to find the problem.

(4) The memory space of ROCKEY6 SMART dongle is about 64 KB. If FLOAT library and
RSA_DES library are loaded, there will be about 28 KB left available. The space is located at EEPROM

with 500,000 rewritten times. The rest of memory is located at FLASH with 20,000 rewritten times.

ROCKEY6 SMART User Manual V1.3

Reading times is not limited. RSA_DES library costs about 14 KB space and FLOAT library costs about
21 KB space.

(5) There are three ways to load executable programs to the dongle:
v' Use “Download to Flash Memory” button in KEIL
v' Use ROCKEY6 SMART IDE tool to import BIN file generated by hexbin.exe

v Use ROCKEY6 SMART API to import the program

(6) An advice for programming, one process should only call open and close dongle once. When
start the process, open the dongle, and when close the process, close the dongle. For multi-process

and multi-entry operation, please add mutex mechanism to the design.

(7) C51 program has three ways to accept external inputs. When acquire BYTE input and store it in
integer variable, please alternate the order of the inputted bytes. The output of C51 program is in BYTE
order, please also alternate the order of integer variables (refer to sample 11). For double float variable

(DOUBLE type, 8 bytes), the order need not to be changed.

(8) If do not want the files be listed with ROCKEY6 SMART IDE, there are two ways to prevent this:
Set executable file’s attribute as internal executable. File will only be listed after verified super
password. Using APDU filter, software vendor can define the APDU command of listing files (refer to

chapter 12.4).

(9) Management code is composed of four parts (Zone, Distributor, Userl, and User2). This
information is preset during the manufacturing. User cannot change them. Management code is used
for sales management. Different software vendors have different management code. User cannot by
the dongle from other vendor which has the same management code. It is the important information to

identify dongles (refer to samplel8).

vi

ROCKEY6 SMART User Manual V1.3

(10) Remote update cipher text file is related to the user code and update password (if password is
set). This means the same plain text file can generate different cipher text with different user code or

remote update password (refer to chapter 5.2 Secure File Transfer).

(11) Virtual card cannot stimulate all the functions of real card, for example RSA_DSE function,

C51 program calling other C51 programs. Developing applications with real card is recommended.

(12) When calling by external API, executable programs are identified by their file name, not the file
ID. Using same file name and file ID is recommended. For example, file ID: 0x1008 will have the file

name “1008”. File name can not he overlapped.

(13) One note for using counter of ROCKEY6 SMART, if setting the specific number of times,
please do not process data until the counter decline to 0. It is supposed to start operation while number
is greater than 0, or the counter of ROCKEY6 SMART will be un-reused for the user, and must be

returned to the manufacturer to be initialized for the second time.

(14) Please mention the following points in RSA encryption/decryption:
Key length is measured by bits. Only 512 bits and 1024 bits RSA keys are supported
Do not set the name of public key file. Please leave it empty.

The default value of e is 65537. This value cannot be changed.

XXX

When encrypt the data, please set source data’s highest byte to 0 in order to prevent overflow.

(15) It is important to keep the version in match mode if loading RSA_DES and FLOAT two
libraries into a blank ROCKEY6 SMART, that is to say, the version of two files float.bin and rsa_des.bin
in the <TOOLS> directory of SDK must be in conformity with the COS and hardware of ROCKEY®6
SMART.

vii

ROCKEY6 SMART User Manual V1.3

(16) If your application is running on Win2000 or above Operating systems with the user role, it is
recommended to use the libraries in <API32\NT Service> directory of SDK, and referring to the
samples in <Samples\Solution\NT Service> directory. (Concerning applications running on Win98,
directly using Dic32u.dll is ok in respect that there is no separate role under Win98 systems, such as
Administrator, users...). Rockey6SmartSvc.exe is a service program; it is required to install it using

APIs provided by Dic32Svc.dll:

v" Install Service:

Instal IRYSService(LPCTSTR IpFilePath)
// IpFilePath points to the path that Rockey6SmartSvc.exe locates, such as
"C:\\ Rockey6SmartSvc.exe"; if you copy the .exe file under <System32>

directory, input "Rockey6SmartSvc.exe" without modification is OK in such case.

v Start Service: StartRYSService ()
v/ Stop Service: StopRYSService ()

v Delete Service: RemoveRYSService ()

After service installation, the "ROCKEY6SMART SERVICE" item will appear in the service list with
following path: Control Panel -> Management -> Service, and start automatically with each time
computer starting. Same with Dic32u.dll, calling APIs provided by Dic32Svc.dll is also needed for your

application to run, with a couple of points to be noted:

The maximum size for Input/Output buffer of service program is 2048 byte, for example:

char cmddata[2048];
// buffer for command
char buffer[2048];
// buffer for user

viii

ROCKEY6 SMART User Manual V1.3

NULL is not acceptable to service program, for example:

char temNull[20]={0} ;

memset(temNull, 0 , sizeof(temNull));

DIC_Set(cmddata, DIR_ID, BY VALUE, 0x1000, temNull);

// The last parameter of BY_VALUE is useless for the macro, a pointer but

"NULL"™ may be provided at such case

String-like parameter cannot be accepted by service program in straight way, which need to be

copied and stored at the location pointed by a variable and then pass in.

strcpy(buffer , "Dirl™) ;
// string to be copied and stored in memory pointed by variable
DIC_Set(cmddata, DIR_NAME, BY_ARRAY, 0, buffer);

//copy "Dirl" from buffer to the memory pointed by cmddata

(17) After encryption, we suggest user to create an executable file for Rockey6Smart with the
following method (refer to Section 12.4 for detailed information). Therefore, it is unable to list the file
directory inside of the ROCKEY6 SMART whether using the tool IDEIll.exe in <Tools> directory or

calling APIs. Compile code below by KEIL with .bin file output.

#include “sys_api.h"
void main()
{
word sw = O0x6982;
set_response(2,&sw);

exit(Q);

ROCKEY6 SMART User Manual V1.3

And generate the executable file, applied "00B2" as name and ID, inside of the ROCKEY6 SMART

from the well-compiled .bin file by APIs invocation.

(18) If using multi-thread on the client-side for ROCKEY6 SMART, the module number of each

thread logged on should be different to each other, i.e. the thread and the module humber

(19) Code for calling APIs can be obtained by the GenCode.exe tool in the <TOOLS> directory on
SDK; similarly, refer to ErrorLookup.exe in the same directory you can look up the error code with

particular description

(20) Attention for C51 programming is expatiated in the Appendix B.

(21) While running on Vista OS, it is quite important to select "running as the administrator” on the
popup dialog after right-click the service program icon, or you can change the running mode of this

application to Administrator rights (please get detail from vista user manual).

ROCKEY6 SMART is a newly developed powerful security product from FEITIAN Technologies. It
is a smart card kernel based USB device that combines software protection dongle and smart card
technologies in a very small form factor. It supports multiple applications including software protection,
personal identification and authentication, data security and protected electronic transactions. This

manual will guide you on how to use ROCKEY6 SMART to protect and encrypt your products.

ROCKEY6 SMART User Manual V1.3

TABLE OF CONTENTS

PART 1 FUNDAMENTAL SECTION -ssssssimiiiiiiiiiiiiiiisi

CHAPTER 1 ROCKEY6 SMART SOFTWARE PROTECTION SOLUTION sssssssssssssinsieeeeee

1.1ROCKEY6 SMART INTRODUGCTION st
1.2 How TO PROTECT SOFTWARE WITH ROCKEY6 SMART = veverersesisiii i,

1.3 HOWw ROCKEY6 SMART PROTECTED SOFTWARE :+++tssetsstistiutiustitiisiisiiiiiisi

CHAPTER 2 ROCKEY6 SMART INSTALLATION AND REMOVE ++--vvvveeeeessssssssssssssssssssssssnnn

2.1 TN ST ALLATION trertrtrtattnastntstststststtsientstssssss sttt s a8 s et s e e e e a s aes
2.2 REIMON AL ++ e ertntrtumuntunesinmeisntiesnsiesininiesinnesinmeisnsiesstetmtetssistesteesitntistittstittetstinentiesieeisiiiesiiiesiiiimiii

2.3 INSTALL AND REMOVE DRIVER *##t et sttt

CHAPTER 3 INTEGRATED DEVELOPMENT ENVIRONMENTS (IDE)-+--rrsesssssssssssssssssssssssssnnn

3.1 IDE INTRODUGCTION e+ e vesrsesssssastssntssusnsnsususustststssstssssnssssstnstsssssssssstss

3.2 WRITE FILES INTO ROCKEY G SMART «+vrereesrsisiisiiii i

CHAPTER 4 CARD OPERATION SYSTEM :sssssssssiiiiiiiiiiiiiiiiiiiiisississsss e

£] IMIODULE +++++++++++t4seesesseseasensessaneanessessastasesestaseasestassasensestaseasestassaseases s e s e et enee st aseate e et ameabe e aneaneee st aneen e
4.2 DATA FILES AND DIRECTORIES :+++++++++tsttttstattatestastatmtestartasestastastatetastaseatstastasessestaseasestassaseseestasessens
4.3 EXECUTABLE FEILE r+rerrereeressestereamemueseaeaseeestaneasestastasesestaseasestassasessessaseasessessaseasensessasessessassaseneessanensens
L.l EILE CATEGORIES -++++++++testsststtstastatestatamtatestastaststastastasestastasestastastasestastaseabe b et b abeabe b abe et et e st et e b et ane e
4.5 FILE SECURITY LLEVEL ++ereeerrerearesseruatamenuestaeasestastasesestaneasestassasessessastasessessaseasessesasessessassaensessaeasens
L8 FILE ATTRIBUTES +++++++e+tesesesttstastatestatamtatestastasestastaseasestaseasestastastasestastase et et et b abe b et abe et et asbabe b et ane e

4.7 SECURITY IMECHANISIM vt vt tentsuetunttttatusstnttsttsssssts sttt st sttt st a e e a it e

CHAPTER 5 REMOTE MANAGEMENT -ttt

5.1 UUPDATE TAG tererereerrestrattmuuntitttitisisss sttt s s s s sttt et

B 2 P D ATE FILE #rrerertrtrmntimuiintiintiiniiiininisi e e

Xi

ROCKEY6 SMART User Manual V1.3

5.3 REMOTE IMODULE IMLANAGER -+ #t st tttusttustsustststststntst sttt sttt sttt 42
5.4 INSTRUCTION OF REMOTE UPDATE ON CLIENT=SIDE -+ +eeresesresssisstsss st 46
CHAPTER 6 PRODUCTION MANAGEMENT -1t 48
PART 2 APPLICATION SECTION -sesssssttrsestissssssss s 54
CHAPTER 7 DEBUG WITH ROCKEY6 SMART SIMULATOR vvvvvvvessssssssisisissssssissssssss 55
.1 CONFIGURE KEIL IDE e tetersnttaamiunmiiiiiuiiiiiiiieiiiieiis ittt 0000000000080 0 1080000001800 s st s bt a bt et b s e aas 55
.2 CREATE A PROJE CT tr e rteststttststitnisisinstssinmmsinsistiessemsemssnssmnsienmimmime et 55
7 B3 PROJECT CONFIGURATION «rrrrrrrerensesentnnensnntssssnststssttsssssssssssssss sttt sttt sttt st rens 56
A DEBUGG NG #+#+ v+t tetrtastmattntiusttttsieisss s s e e e e e e e 62
75 QU|T ... 63
7.0 SAMPLE DEBUGGING #+rvet st tsttuttutuieinsmsmmmmimismiesieisnmsnssnsenmimmim i 63
77 WRlTE PROGRAM TO THE REAL CARD vt ettt 64
T 8 SUMMARY reertrtrtrtuttnutintists e h s e e e e 64
CHAPTER 8 ROCKEY6 SMART ESSENT AL -1ttt 65
8.1 DEVELOPMENT INTRODUGTION ##rt s tetesustsusususuststststsststsssssssstssstststssstssnssnssnstnsmsssss s 65
G2 FUNDAMENTAL USAGES +r e rrrreretnmentnntsststiss sttt sssnss sttt r s s s s st st e a e s s e st a e st s et a e e n e e nnens 65
B. 3 CREATING GO PROIE CT +v e et tuttuttutnisuiutituiusntsistie ettt e 68
8.4 CREATING AN EXECUTABLE FILE IN THE DONGLE -+ esreeeresivesesss it 68
8.5 EDITING AND ENCRYPTING DONGLE INTERCOMMUNICATION PROGRAM ::ereesrresieiimiisiisiisiiii i 71
S.0 CORE CODE SELECTION #rrrrrereresstasentnntsstnsssnststssssessssesssssssstsststes sttt ettt aees 73
B 7 SUMMARY reertrtrtrtutttutinttintis it s e e E e e e e 74
CHAPTER 9 ROCKEY6 SMART COMMUNICATION APl REFERENCE - cvvvvvvvevssssisssiiiiiii 75
9.1INT D|C_F|ND() .. 75
9.2 INT DIC_FINDBYMGRCODE(VOID * PMGRCODE) -+ eeseesssisstseiss s 76
9.3 INT DIC_OPEN (INT HIC, CHAR™ READER_NAME) «++ ¢+ttt ettt 76

Xii

ROCKEY6 SMART User Manual V1.3

.4 INT DIC_CLOSE(INT HIC) +++++e++tssts ettt 77
9.5 INT DIC_COMMAND(INT HIC, INT CIMD, VOID™ DATA) +«++rrtrrtssressre sttt 78
9.6 INT DIC_GET(VOID* TARGET, INT PL, INT P2, CHAR® PSTR); v+ stsstsrstsiutsittsitisiisiti i 86
9.7 INT DIC_SET(VOID* TARGET, INT PL, INT P2, INT P3, CHAR™ PSTR) -+ e+ rrsresrtartaitaiassins s 90
9.8 INT DIC_GETVERSION(CHAR VER) :++ 1+ttt ettt 90
0.9 RETURNED ERROR CODE #++++rvt+rttetsteestutamuttatetanttntetatttasteestttassaeiasteeasseea et asesas e e se e e et e nt et e e tb e e st e n st e et e e e e e e 91
0. 10 AUTHORIZATION -+ +++ce+steessreasreanuteemsneenseesastesasstesssrtasteasteassseaaseesasbee et st easbeeasbeeaab b e e be e et b e e ab b e e ek bt e et bt e e skt e e s bbeasbreebeeenes 94
CHAPTER 10 API REFERENCE AND SAMPLES :vvvvvvvuuseriisiisisii i 97
10.1 APT REFERENCE - ++tt+++ttetsttetttttaittattts ittt isttsistasisbasssbs a4 s s st e e b e e b e e e b e e e b L e e b4 e e b4 e eh L e e e b b e e e b e e e e e e b b e b e e b e et e s ea e e 97
10.2 SAMPLEOL FUNDAMENTAL FRAMEWORK -+t ttssrtesstttsstt st 98
10.3 SAMPLEO2 TRAVERSING DONGLES «++::xrreettsssssssttttttts ittt 100
10.4 SAMPLEO3 DYNAMIC LINKED IMIODE -+ +++ s vstsstts sttt 101
10.5 SAMPLEO4 GET MANUFACTURE AND VOLUME INFORMATION s sssstttesssnssittittnsss ittt 104
10.6 SAMPLEO5 GET MANUFACTURE TIME, HARDWARE SERIAL NUMBER, SHIPPING TIME, AND COS VERSION: -« wtveee 106
10.7 SAMPLEO6 GET ZONE CODE, RESELLER CODE, USER CODE 1 &USER CODE 2:+++++rsrrssesvsssmnisnisinninisiiisss 107
10.8 SAMPLEO7 RANDOM NUMBER: -+t +rtesttesttasttastemstemttenstastastastastattast et east ettt e st et et e bttt et et e e e e e e 108
10.9 SAMPLEOS SUPER PASSVVORD :+++++c++sttessttesstttasteeasutanureatteanstensntantmttasteeasstanattatttaasteasteaaseeaasteaasstasiteabeeasstessreans 109
10.10 SAMPLEQO DIRECTORIES AND FILES +++cvtsrettssttsssies ittt 111
10,11 SAMPLELD REMOTE UPDATE +++++ct+steessreessrttasteeaumenurtateeaasteatttanseesastesasstasaseatteasteassteasseesasbeaasetesbteabeeanbteanireans 115
10.12 SAMPLEL1 WRITE AND EXECUTE PROGRAM -+t x vttt 115
10.13 SAMPLE12 DOUBLE-PRECISION POINT CALCULATION +++:rresettttsssssssssttttsss bbbttt 116
10.14 SAMPLEL3 SECURE FILE TRANSFER vt ssettssttssttts ittt 116
10.15 SAMPLE14 DES AND 3DES ENCRYPTION AND DECRYPTION s rrestttssssnniniitinissiiiiiinttns s 116
10.16 SAMPLEL5 RSA ENCRYPTION AND DECRYPTION «+++rttsretasttsitaiitii i 117
10.17 SAMPLELD COUNTER USAGE +++++++++teessrtesstttasteeaurenurtatttaastaatrtanstetastaaasstasastattsasteaisbeaaseeaasbeaasttas bt e abeeanttesntreans 118
10.18 SAMPLEL7 READING THE REMAINING SPACE «:++rretsretsrstasits ittt 119
10.19 SAMPLE18 UNLOCK THE DONGLE ACCORDING TO THE MANUFACTURE ID «rerevvereeemiiiiniin 119

Xiii

ROCKEY6 SMART User Manual V1.3

PART 3 ADVANCED SECTION ++vstserstetttstts s 120
CHAPTER 11 SYSTEM CALL FUNCTION USAGE -++::+::srrevessssssessiisisisssiisi s 121
111 IMIEMORY MANAGEMENT ++++++++tt+sttratttaiattaiststastatastttsbstaittsa sttt e s st e e sh it s s as b e s ab b e e s he e s b e e e b L e s b b e s s b b e eh b e s eb b e e s be s s b e s st e be et 122
11.2 FUNDAMENTAL FRAMEWORK :++reetetssteeettstteeaiittteatitteeasiuttessittessiistesssistessanstsessisstasssisttesssstasasisaaesssbaes s s iaaeesssnrees 123
113 FILE OPERATION - ++tetesttetstttsumtatttaiutssistssistssastasastsssbssaba s e bt e e b b e sh b e oh b e e eh b e e b e e e b e e e b Lo e b Lo e b b e eh e e eb b e e s b e s s e s s bt e bb e 125
11,4 INVOKE EXECUTABLE PROGRAIMS vttt 128
11.5 SYSTEM INFORMATION AND SECURITY IMECHANISM «r+ertterstursiunsiniiesisi i 130
11.6 RSA ENCRYPTION AND DECRYPTION v eettes sttt 133
11.7 DES ENCRYPTION AND DECRYPTION rrerresressretsteisisitis i 135
11.8 OBTAIN RANDOM NUMBER -+ +++ttetttstttettttttteaittteasinttaeasitttee s itte s sata et s it e s bt e s s i b a e e s et e e e s bt e e e s b e e e s bae e s s iaae e s s srare s 138
11.9 FLOAT FUNCTION LIBRARIES USAGE «rrverressretsteisititisiti it 139
11,10 RELEASE MANAGEMENT +++++rstetetsttteattstteeaiittteesittesasisttessittesssiatee s iate s st e s s i st e e e s ih bt e e e s bt e e e st ae e e s s bae e s s iaaee s s eraaee s 141
CHAPTER 12 ADVANCED FILE SYSTEM APPLICATION -+ reresssssssrsssisissssssss oo 145
2 T == T O 145
D22 APDIU +++vvee sttt ittt ittt ettt h bR 145
12.3 ROCKEY6 SMART APDU COMMAND SET e ereseesesssisste s 147
T2 A FILTER APDU o rtttttitiiiiiiiiiiiit e e 152
CHAPTER 13 COS SYSTEM CALL REFERENCE +--vv::-ssserriessisisisisis s 159
13,0 FILE OPERATIONS - +++c++ttetstteestmtauttaiuttsistssistssastasastssabs s s bt s e b Lo s b b e e sh b e ob b e s eb b e e s b e s e b e e e b L e e b b e e b b e eh e s eb e e s b e s s b e s s bt e bb et 159
13.2 SECURITY IMECHANISM -+ -+ttt ttetttatttasttasttast e et as s eh bbbt b e b e b e b e a4 e a8 e a8 e s e e b b e e b4 b e s b e b e b e s b e s b e e e e b e e b e e s era e 163
13.3 SYSTEM SERVICES :++r++ttetsttettttatttaiutisistssistssastasastsasbs s bt s e bt e s b b e sb 4 e oh b e e o b b e e be e s b e e e b Lo s b b e s b b e eh e s eb e e s b e s b e s st e e bb et 164
13.4 SYSTEM INFORMATION ++++rveetetstretatutteatiutteesiittseasisttesasisttessiste s s s iats et s s bt e s s s b b s e s s ar b b e e e s b bt e e e s bt e e e s b be e e s st bae e s s iaaee s s eraaee s 166
13.5 DOUBLE PRECISION FLOAT CALCULATION rrxr s rttsrsts sttt 168
13.6 FLOAT POINT LIBRARY EXPANSION :rretressrsresets ittt 171
13.7 ENCRYPTION AND DECRYPTION FUNCTIONS: #+ s retsretsrsturs ittt 176
13.8 TIMER AND COUNTER +++t+ttettetttettattasttasteasteasttastsasts st shts bt st e b e b e a4 e a8 e s e a8 b e e s b e e b e s b e s e b e eb e s b e s e e e e e b e e b e e s re e 180

Xiv

ROCKEY6 SMART User Manual V1.3

T 3.9 OTHERS e et trtntuttuenieuitmestesstsesisneesae st s st E e L e e e e e e 8 e e e 818 s e e s et e e e e e 181
13.10 SYSTEM FUNCTION CALL ERROR CODE e reteresssrsisi it 182
N =TT T) 183
APPENDIX A GLOSSARY OF TERIMS rrrrreresasestseustntnsttnstnessssstssstsssststssstssass sttt sttt 183
APPENDIX B TERIMS - cee e 185

XV

ROCKEY6 SMART User Manual V1.3

PART 1 Fundamental Section

All ROCKEY6 SMART special features, functions and basic concepts for software protection will

be introduced in this chapter. You will obtain a general overview on ROCKEY6 SMART.

Chapter 1, ROCKEY6 SMART Software protection solution
In this chapter you will learn the specifications and the functions of ROCKEY6 SMART, and theory
of protecting your application. After completing this chapter, you will obtain a general overview of

ROCKEY6 SMART.

Chapter 2, ROCKEY6 SMART Installation and Removal
Before using ROCKEY6 SMART, you should first install the ROCKEY6 SMART Developer Kit. This

chapter will explain the procedure to both install and remove the ROCKEY6 SMART Developer Kit.

Chapter 3, Integrated Development Environment (IDE)

In this chapter you will learn the following,

How to manage the card and file inside of the card; how to format and set the password;
Manage to download executable files;

How to implement the remote management;

Chapter 4, Card Operation System (COS)
ROCKEY6 SMART is based on IC card technology. COS regards the electrical chips as a small

virtual computer. ROCKEY6 SMART has its own CPU and file system.

Chapter 5, Remote Control

Remote control involves three parts; remote update control, secure file transformation and remote

ROCKEY6 SMART User Manual V1.3

model control. You can update your software and the encryption algorithm, and also manage the user

model (shut or open the corresponding model) securely.

Chapter 6, Manufacturing Management

You will learn how to batch program ROCKEY6 SMART in this chapter.

ROCKEY6 SMART User Manual V1.3

Chapter 1 ROCKEY6 SMART Software
Protection Solution

1.1 ROCKEY6 SMART INTRODUCTION

The ROCKEY6 SMART dongle is another powerful product from FEITIAN Technology Co., Ltd. It
is the result of research and insight gained from the development of the ROCKEY5 dongle, ePass1000,
ePass2000 and Feitian’s experience in driverless technology. The ROCKEY6 SMART dongle is a USB
device which is based on IC card technology utilizing encryption technology. It can be utilized in many

areas such as software protection, authentication, and electronic business and information security.

ROCKEY6 SMART Features:
v/ Security at Hardware Level
The ROCKEY6 SMART is based on smart card technology. Smart cards are widely used in the
banking and financial sectors where security is of paramount importance. Smart card hardware is
engineered to prevent reverse engineering and specialized analysis, used by hackers and others who
seek to crack security schemes. Smart cards integrate modules such as CPU, RAM, EEPROM and
FLASH and are essentially a mini-computer on a chip, providing a powerful and versatile platform for

developing complex and powerful security programs.

v" Hardware Compatibility

ROCKEY6 SMART consists of a USB card reader and a specially programmed smart card.

v/ Security at Software Level

The target program’s kernel algorithms and data may be “transplanted” and executed inside the

ROCKEY6 SMART User Manual V1.3

smart card’s protected environment. The transplanted code operates under the management of the
smart card operating system and forms a miniature-computing environment that runs in parallel to the
main computer. The ROCKEY6 SMART environment and the main computing environment exchange
data through the USB port. The probability of a successful hack of this system can be reduced to near

zero if a reliable solution plan and certain sophisticated algorithms are correctly adopted.

v' Software Compatibility
ROCKEY6 SMART fully supports the ISO7816 smart card standard as well as specific extensions
to the standard. This system will be familiar both to users of software protection dongles as well as

those familiar with smart card technologies.

v Flexibility

Many advanced administrative functions (such as Remote Update Management) have been
incorporated for software developers. All security requirements are accomplished through a set of basic
functions provided with the ROCKEY6 SMART system. Developers may build their own complex

protection plans based on the ROCKEY6 SMART function set.

1.2 How to Protect Software with ROCKEY6 SMART

By using ROCKEY6 SMART, you can migrate a portion of the target application into the ROCKEY6
SMART memory, with the rest residing on the computer. The applications which are migrated into the
ROCKEY6 SMART are called “external programs”. The external program will not be loaded into the
main computer memory during execution. External programs are stored in Electrically Erasable
Programmable Read Only Memory (EEPROM). The main program can call the external programs
separately — it cannot call them simultaneously. External programs can also call one another. The target

application cannot function properly without the dongle attached.

ROCKEY6 SMART User Manual V1.3

Application

ROCKEY6 SMART

) 4

Algorithmé& data

External program

Figure 1-1 How ROCKEY6 SMART Protects Software

1.3 How ROCKEY6 SMART Protected Software

The ROCKEY6 SMART dongle is a driverless device. You can connect the dongle directly to the

computer without having to install any USB device drivers.

uUSB [| ROCKEY®6

SMART

Figure 1-2 ROCKEY6 SMART Protected Software

1. When the main program execution reaches an external program, the program call command

ROCKEY6 SMART User Manual V1.3

is sent to ROCKEY6 SMART along with the required parameters.

2. ROCKEY6 SMART responds to the command of the main program, executes the related
external program and returns the result back to the main program. ROCKEY6 SMART remains in
waiting status until the next command.

3. You will obtain the results from the dongle as if it were executed all on the computer;

however the procedure runs in the dongle and never loads into the computer.

ROCKEY6 SMART User Manual V1.3

Chapter 2 ROCKEY6 SMART Installation and
Remove

On the ROCKEY6 SMART disc, you will find the directory ROCKEY6 SMART SDK. See details in

“Appendix B2 ROCKEY6 SMART SDK". Double-click ‘setup.exe” to start your installation.

2.1 Installation

v Stepl: Welcome Window

After double clicking "setup.exe”, the following window is shown:

15/ ROCKEY 6 SMART SDK V1.30 Setup =L

Welcome to the ROCKEYS SMART
SDK ¥1.30 Setup Wizard

This wizard will guide wou through the installation of
ROCKEYS SMART SDK V1,30,

It is recommended that wou close all other applications
before starting Setup. This will make it possible ko update
relevant system Files withaut having to reboot wour
computer,

Click Mext ko continue,

[NBXt%J [Cancel

Figure 2-1 Welcome Window

v Step 2: Agreement

ROCKEY6 SMART User Manual V1.3

After you choose [l Agree] the agreement, click [Next] to continue:

it ROCKEY 6 SMART SDK V1.30 Setup

License Agreement "."" 4

Plzase review the license terms before instaling ROCEEYS SMART i = o
SDK ¥1.30.

Press Page Down to see the rest of the agreement,

[

Feitian Technologies Co., Ltd
Software Developer’s Agreement i

All Products of Feitian Technologies Led. (Feitian) including, but nat limited ta,
evaluation copies, diskettes, CO-ROMs, hardware and documentation, and all Future
orders, are subject ko the terms of this Agreement., IF vou do nok agree with the
terms herein, please return the evaluation package to us, postage and insurance
prepaid, within seven davys of their receipt, and we will reimburse you the cost of the

Procdurt lees Freinht and reacnnahle handlinn rharnes

If wou accept the terms of the agreement, click I Agree to continue, You musk accept the
agreement toinstall ROCKEYS SMART SDK W1.30,

< Back ” I.ﬂgree% [Cancel
b

Figure 2-2 Agreement

v Step 3: Select Installation Model and Components

il ROCKEY 6 SMART SDK V1.30 Setup

Choose Components i ._.:-' [
Choose which Features of ROCKEYSE SMART SDK Y 1,30 you want y - o
ko install,

Check the components you want to install and uncheck the components vou don't want ko
install, Click Mext ko continue.

Select the type of install;

Sl aeiess e dniral ROCKEYS SMART DIC32 API Library
;T-,iT;ﬁnents PR ROCKEYS SMART Help Documents
' ROCKE'6 SMART IDE

[roCKEYE SMART Driver for Windows9a
D ROCKEYS SMART Samples
I:‘ ROCEEYS SMART LIMUE SDK

'D_e-;cription
Space required: &.9ME Position o moLust

[< Back ” Next>kj [Cancel

Figure 2-3 Select the type of installation

ROCKEY6 SMART User Manual V1.3

- If “Typical” option is chosen, the program will automatically install the ROCKEY6 SMART API
library, ROCKEY6 SMART IDE and help documentation for you.

- If “Compact” option is chosen, the program will only install the ROCKEY6 SMART API library and

developer manual.

- If “Custom” option is chosen, the user can select the components needed to be installed.

v' Step 4: Install Location

i ROCKEY 6 SMART SDK ¥1.30 Setup

Choose Install Location
Choose the Folder in which to install ROCKEYS SMART 50K W1.30,

Setup will install ROCKEYE SMART SOK 41,30 in the Following Folder, To install in a different
folder, dlick Browse and select another Folder, Click Mext to continue.

Destination Folder

I-: \Program FilesiFeitianiROCKEYS SMART SOK W1, 30 | Browse. ..

Space required; &,9MB
Space available: 33,856

< Back “ Mext = ’4 [Cancel
L

Figure 2-4 Path Selection for Installation

v Step 5: Installation finish

Once completing the installation, click “Finish” button to quit.

ROCKEY6 SMART User Manual V1.3

® ROCKEY 6 SMART SDK V1.30 Uninstall A=A

Completing the ROCKEYS6 SMART
SDK v1.30 Uninstall Wizard

ROCEEYA SMART S0K %1.30 has been uninstallzd From yaour
camputer,

Click Finish ko close this wizard.

Finish

Figure 2-5 Complete Installation

2.2 Removal

There are two methods to remove the installation. One is from “Control Panel” > "Add or Remove
Programs” where you select “ROCKEY6 SMART”; another is from ”start” > "Programs” > uninstall

“ROCKEY6 SMART".

2.3 Install and Remove Driver

ROCKEY6 SMART is a USB device that works smoothly with Windows and Linux systems. If
ROCKEY6 SMART is plugged into the USB port, the system will automatically detect that the drivers

are not installed in the computer and initiate the driver setup wizard.

For Windows98 systems, a Win98 installation disc is required for the driver installation. For other

10

ROCKEY6 SMART User Manual V1.3

operating systems such as Windows Me/2000/XP, Windows 2003 server and Vista as well, the driver

setup wizard will automatically start.

11

ROCKEY6 SMART User Manual V1.3

Chapter 3 Integrated Development
Environments (IDE)

The Integrated Development Environments has the following features:

v/ Card management, it includes formatting, password and volume initialization and updates etc

v' Executable file management for downloading

v" Remote control (for details read Chapter 5)

3.1 IDE Introduction

#' ROCKEY 6 SMART IDE v1 .30.?.?*? - [Real device (ROCKEY & SMART 0]]

B=1[E3
FilefF) EdtE) Wwiew() Cardoperation{C) Toals(T) ‘Window{4) Help(H) - 8 x
=
S e el AE XEREROE
r_..e_nﬁﬁﬁé]ﬁ'"gﬁﬁnf_ﬂ__ File (folder) name 0] Class = Size Cl.. Property | Securit...
% DEFAULT UOLUHE | ZFO01 FF 15 ala} File sys... 0
@2000 2000 FF 2102 00 Exec o
A | B
Ready file info rony , coll

Figure 3-1 Integrate Development Interface

12

ROCKEY6 SMART User Manual V1.3

From Figure 3-1, the standard IDE includes menu bar, tools bar, project bar, edit window, compile
bar and status bar. Here, we only provide an example for “Project” bar, “Tools” bar, “Detected Device”

window and “Virtual Device” window.

v" Menu Bar
Menu bar encompasses all the commands to perform all IDE functions. The following table lists all
items from the menu bar. Menu items are dynamically designed, meaning that they appear only when
they need to. Therefore users may view different menu items according to cases. Their functions will be

discussed in the main menu section.

Some menu items in our IDE example:

Table 3-1 File Menu

New C51 Project Create a new project
Browser Real Devices Browser Plug-in Devices
New Virtual Device Create a new virtual device
Open Virtual Device Open a virtual device file
Recent Files List recently opened files
Quit Quit program

Table 3-2 View

Toolbar Display or hide Tools bar
Statusbar Display or hide Status bar
Device Tree Display or hide files tree of the device

Table 3-3 Card Operation (Appears only at device window)

Refresh Refresh current active devices

Format Format device file system

13

ROCKEY6 SMART User Manual V1.3

Modify Password

Modify super password for device system

Remote Update

Management

Create and test remote update password

Remote Module

Management

For manufacture remote module management

Generate Cipher text file

Generate a cipher text file

Generate Plain text file

Generate a plain text file

Card Information

Display information for manufacturer, hardware and

management ID

Burn Real Card

Burn the content of selected virtual device into real card

Verify the Super Password

Switch to the state for verifying the super password to

display the internal files

Cancel Verification State

Cancel the state for verifying the super password to hide

the internal executable files

Import File

Import disc file into device

Export to Disc

Export file to the disc

New Directory

Create a new subdirectory under the file system of the

device

Run

Run the selected executable file

Table 3-4 Tools

Binary Code -> Source

Convert binary code to arrays in C,VB source code

Code

Table 3-5 Windows (Appears at sub-window active state)
Cascade Cascade the windows
Tile vertical Arrange windows by column without cascade

Tile horizontal

Arrange windows by row without cascade

14

ROCKEY6 SMART User Manual V1.3

Close Window Close current active windows
Close All Close all active windows
Previous Window Switch to previous window
Next Window Switch to next window

Table 3-6 Help

About ROCKEY6 SMART | Display software information, version number, copyright,

IDE API version number and hardware information

v" Tools Bar

Tools bar may be displayed differently each time according to distinguished active window types.

Table 3-7 All Buttons

& Open a virtual device file

i_"'f Browse connected devices

? Display software information, version number, copyright, API version

information and hardware information

Table 3-8 Useful buttons in system initial state (before active window popping up)

’t Create a new C51project

Table 3-9 Useful buttons at the state of editing window is active

” Save active content

1= | Cancel previous modification

15

ROCKEY6 SMART User Manual V1.3

Cut the selected subject and save it to the clip board

P

Copy the selected subject and save it to the clip board

P

"—_} Paste the saved subject from clip board

Table 3-10 Useful buttons when the state of the device window is active (includes real

devices and virtual devices)

Import files from the disc into the device

Export files from the device to the disc

Create a new sub directory in the device file system directory

Copy the selected file subject and put it on the clip board

Paste the content of file subject from the clip board

Delete file or directory. When you delete a directory, please make sure the

X@ﬂ?ﬁ“@@

directory is empty before its deletion.

Display the content of the selected device file.

Switch to the state of super password verification, in order to display the

2 |

internal files.

Cancel the state of super password verification, in order to hide internal

B

executable files.

Modify the password for the device file system.

Refresh the devices.

FURSNE

Display manufacturer information, hardware information and management

code.

| Run the current executable file. (If it is an executable file)

16

ROCKEY6 SMART User Manual V1.3

3.2 Write files into ROCKEY6 SMART

After the software system is successfully initialized, the user can write files into the ROCKEY6
SMART. The initialization of ROCKEY6 SMART includes setting up the label, manufacturer information
and super password. The user can modify the default values by simply formatting the ROCKEY6

SMART.

Figure 3-2 displays the formatting window for ROCKEY6 SMART. It is different from setting up the
virtual file system. The label and manufacturer information in the virtual file system contains default

values that cannot be modified.

Format

[DEFAULT VOLLME]

Yalume

Maker imfo |DEFALLT ATR

RSA/DES: Mot zupport Flaating paint:Mat support

Format the file spstem. The maker infa iz a zting no
longer than 15 charz, and o maker info means the
default value. Yaolume iz nio langer than 16 chars.

Figure 3-2 Formatting ROCKEY6 SMART

Before formatting, select the necessary modules for loading. Writing a file into the ROCKEY®6

17

ROCKEY6 SMART User Manual V1.3

SMART is easy, similar to copying a file between folders. It can be done by using the following
methods:

“Ctrl + C” (Copy) then “Ctrl + V" (Paste) or right clicking the mouse and selecting “Copy” and “Paste”.
This method is commonly used for adding a file to the dongle or copying an executable file from one

virtual card to another.

- Bulk Burn Function
The difference between directories in a PC and ROCKEY6 SMART is that the executable file in the
real card can only be deleted and not be read. Some manipulations require super password verification
like deleting files, however some other manipulations like copying one file from one ROCKEY6 SMART

to another, or viewing a text file and performing an executable file do not.

18

ROCKEY6 SMART User Manual V1.3

Chapter 4 Card Operation System

4.1 Module

ROCKEY6 SMART uses an IC card, integrated circuit chip, as the core for its algorithmic execution
and storage medium. The design of this card’s operating system enables the entire device to work as a

virtual mini computer which has its own CPU and file system.

IC Card Chup

EEPROM(32k)

'O Control COs RAM

CPU

— Storage

Figure 4-1 IC card structure

The EEPROM works similar to a computer’s hard drive which can be used for storing programs
and data. All files in the ROCKEY6 SMART are stored in EEPROM, with these files being only read and
written by its manufacturer or its integrator but not End Users. End Users are unauthorized to access
data in the EEPROM. There is only one file system in the EEPROM with every operation being

performed in terms of file-operations (open, close, read, write, delete etc.). The EEPROM could be

19

ROCKEY6 SMART User Manual V1.3

treated as a logical driver in the PC with the entire file system marked to a volume (root directory), just
likes a logical driver in drive "C:\ . Common operations can be performed in the logical driver, such as
making directories, and writing and removing files, however, some operations require super password

verification.

The RAM area is similar to a computer’s memory where the application input, output and

temporary variables are store.

COS (Card Operation System) controls the entire IC card system. In the process of communication
between ROCKEY6 SMART and the host computer, ROCKEY6 SMART always passively receives
instructions from the host computer, never visa-versa. All messages from the host computer are

interpreted and executed by the COS.

4.2 Data Files and Directories

The file system contains data files, executable files and directories. In this section, we explain the

data files and directories.

Data files and directories are distinguished by a 2-byte ID and located in the same name space. In
the root directory, some IDs are held by the system default directories and files. These ID’s are 0000
(system hold), 2F01 (ATR files - includes manufacturer information), 3F00 (volume), and 3FFF (current
directory). Any one of above four ID’s holds a complete hame space. Except for the above mentioned

ID’s, all other ID’s can be used freely.
Volume and manufacturer information can only be set and modified when the ROCKEY6 SMART
is formatted. The content of manufacturer information is 15 bytes long and written by the manufacturer.

If the manufacturer chooses not to input any data, then COS will automatically fill them with default

20

ROCKEY6 SMART User Manual V1.3

values. The volume is 16 bytes long and also set by the manufacturer.

4.3 Executable File

All executable files are recognized by their ID’s and file names. The ID’s for executable files,
directories and data files use the identical name space. We suggest users allocate ID’s starting from

0x1000 when the data files and directories are created. This will avoid ID conflicts.

Naming an executable file (file name is 16 bytes long) is a little complex. An executable file is
usually selected according to its name. The following explanation covers this technical detail. For those

who are not interested in this may want to jump to Section 4.4 directly.

According to 1ISO7816-4, we assign the following rules for naming the executable files.

File name is “xxyy”, 2-byte. “X” or “y” is a hexadecimal number. The following is the range for “xx”

Table 4-1 Value Range

s

X Description
10 - 65 User defined value range 1
67 —TF User defined value range 2

DO - EF User defined value range 3

F1-FE User defined value range4

The following rules are used for the value range of “yy”.
1. Cannot be a 6x or 9x
2. Cannot be odd numbers

3. “66" is a reserved wildcard character. Please do not use it due to its complexity.

The rest are also reserved values for ISO7816-4. They are possibly used by executable files, but

21

ROCKEY6 SMART User Manual V1.3

still complicated when using them.

All executable files are stored in the root directory. In contrast, data files can be stored anywhere in
the directory. An error message of COS system will prompt if moving executable file into the
subdirectory, and accordingly, the executable file cannot be touched by system this way. In the COS

system, ONLY executable files in the root directory can be executed.

4.4 File Categories

Directory categories and file categories are symbolized by a byte (0x00 — OxFF) named File
“FCLA". It is initially defined by the manufacturer. All files with the same FCLA can be treated as files
from the same product. With the restriction of FCLA, all executable files in the ROCKEY6 SMART can
only read, write and create the data files with the same FCLA. The following rules are applied for FCLA:

v' OxFF represents a “null category”, in which all its data files can be accessed by any type of
executable files, but all executable files in this category can only access the data file with OxFF.

v' The category of the root directory is also a “null category”.

v All files with the same category constitute a relatively independent subsystem. All data files of a

“null category” are public data; and all executable files of “null category” are public programs.

FCLA is commonly applied for product management. If a manufacturer is developing many
products, or a number of manufacturers are cooperatively working on the same product, FCLA would
be good to apply. For example, if a dongle needs a set of application software, then set FCLA to “FF".
All files under the same directory and subdirectory would be set to the same FCLA; and their

accessibilities controlled by "security level”.

File category is recorded in the system with 1-byte length called "system current file category”.

When ‘system current file category” is executing “file selection” or fetching the executable files in the

22

ROCKEY6 SMART User Manual V1.3

dongle, it can switch according to the following rules:

(1) If the target file is a “null category” file, then the system current file category will keep its category
unchanged; otherwise they will switch to the category of the target executable file.

(2) Whenever the category switching occurs, the ‘system current security level” will be reset to “0”.

(3) After resetting the dongle, the system current file category’s default value is OxFF (null category).
Another important usage for FCLA is filtering files; however, this topic is beyond the scope of this

manual. For further information, please contact us.

4.5 File Security Level

Beside category, every file has a "security level” for controlling the access to files with the same

category. Namely, "security level” is set for the files with the same category.
In most cases,”security level” combines 4-bits of low order byte (from least significant byte), and
attribute (4-bit of high byte (from most significant byte)) into a byte. There are 16 distinguished states in

total. In those states, “0” is the lowest level and “15” is highest.

COS also has its own security level. At run time, it is recorded by a byte. This security level has to

be updated by the ROCKEY6 SMART internal executable file (via system fetching).
However, there is a constraint — executable files cannot grant COS security levels higher than itself.
Executable files can only access (read, write or create) data files with a lower security level. When

finished, they can set the security level to “0”".

To perform a higher security level management, one can set all security levels to “0".

23

ROCKEY6 SMART User Manual V1.3

4.6 File Attributes

There are five kinds of file attribute of ROCKEY6 SMART: Normal, Internal, Up-to-lgnore, Directory

and Executable. A directory or file can have many attributes.
- “Normal” is the default attribute for a file without any customized settings.

— “Executable” indicates the file is executable for COS. However, those files have to be allocated at
the ROCKEY6 SMART root directory and can only be created or deleted after successful super

password verification.
- “Dir" means it is a sub-directory. If this attribute is set, the other attributes will be ignored.

- “Up-to-Ignore” only applies for internal files of ROCKEY6 SMART. It represents an executable file
that can only be executed on the condition that the system security level is lower than or equal to the

executable file security level. Otherwise the executable file cannot be executed.
- ‘“Internal” means that if it works for a data file, the data file can only be accessed by the

- ROCKEY6 SMART’s internal executable files. It can be deleted by the external program only after
successful super password verification. However in either case, it cannot be read or written by the
external program. If it works for an executable file, the executable file contains hidden attributes. If a
user lists all directory files without supplying successful super password verification, all executable
files with hidden attributes cannot be shown. This is an effective way to protect executable files.

- Only after successful super password verification can executable files and internal files are created
by using the API.

For implementation, use 1-bit high 4-length to represent the attributes

Table 4-2 File attributes” sign and macro

Attributes Sign Macro
Normal 0x00 NORMAL
Execute 0x10 EXEC
Directory 0x20 DIR

24

ROCKEY6 SMART User Manual V1.3

Up-to-Ignore 0x40 UPIGNORE

Internal 0x80 INTERNAL

4.7 Security Mechanism

Core of the security mechanism is that based on the "system security level” which has 16 different
levels. The combination of the "system security level” and the “file security level” control access
permissions to all the files on the card. The COS will only perform operations on a particular file if the
system security level is greater or equal than the security level set for the particular file. There are two
different techniques to change the system security level: verify the super password or perform an

executable file on the virtual machine.

The COS security mechanism includes three sub-systems. They are:

Part 1, Global security

One 8-byte "super password” is adopted as the global security policy. Feitian, the ROCKEY6
SMART manufacturer, initially sets and provides the super password to the software developer. The
super password can be modified or abandoned by the software developer. After successful verification
of the super password, the "system security level” is set to its maximum value and all normal (excluding
internal) data files in the card can be read or updated. Executable files can only be selected or deleted.
The super password is always required for creating the executable files. If the super password is set to
all zeros, the developer can no longer modify or verify it -this operation disables the super password

and permanently eliminates access to super user privileges. Be careful before invoke this operation.

Part 2, File system security

There are two parts to the file system security: (1) file classification application, which allocates the

25

ROCKEY6 SMART User Manual V1.3

files into different kinds of groups. The security levels of the groups are independent. Furthermore the
file classification limits the program in the virtual machine by not allowing access to other files in
different classifications. (2) On the other hand, the executable files must have a security level that is

greater or equals to any data file that it attempts to run.

Part 3, COS security limits

When a running executable file needs to change the "system security level”’, COS will limit the

system security left to equal or less than the program security level.

26

ROCKEY6 SMART User Manual V1.3

Chapter 5 Remote Management

Dongle was used to protect software program by SW vendor with general acceptance; on the other
side, owing to being a physical goods, the selling and updating of the hardware dongle can only be sent
by post but through Internet, which is available for the pure software product. It is quite imperative, in

such case, to achieve the function of remote update with the aid of hardware dongle.

Three types of remote update were integrated into the ROCKEY6 SMART, which are Update Tag

(UT), Update File (UF), and Module Manager (MM).

Update Tag means to change the remote update tag of client-side dongle with secure method,
intended to make internal program on client-side could manage to handle different actions based on the

judgment of this tag; else to implement update combined with other two methods described below.

Update File implies to a full procedure of encryption/decryption across the server-side and
client-side, particularly, encrypts the “plain-text file” first and sent it to user, and on the client-side,
restore the “Cipher-text file” inside of the dongle back to the original “plain-text” one. Within such
scheme, user may replace any file inside of the ROCKEY6 SMART in the direct way, which is quite

powerful and popular for use, and was described later with stress.
Module Manager focus on executable files only, the SW vendor, recurring to some secure methods,

may control the running status of one or a set of .exe file on client-side correspondingly; secure file

transfer, in a similar way, can be used to implement this feature.

27

ROCKEY6 SMART User Manual V1.3

5.1 Update Tag

Update Tag is a basic feature that may be utilized by ROCKEY6 SMART developers to implement
remote updates of their software protection and licensing systems. “UT” is based on “one time
passwords”, that is to say, key of each update operation is unique and can only be used once.

Two relative concepts are involved in the Update Tag; they are “New Password”’, and “New Tag”

described below.

The remote update password---"New Password” is provided by the software manufacturer to the

end user to verify and update the dongle.

The remote update tag -- “New Tag”, should not be confused with the update password as this is
the information set by the software manufacturer for identifying the current software update status. We
recommend you mark the software version, thus providing the ability to recognize the version of
software the user intends to update. This is a 32-bit number, and its highest bit (0x80000000) is used to
show whether the “hardware ID” is used or not. If the bit is "1”, the update password is related to the
“hardware ID” of the dongle; if it is "0” it means the update password has nothing to do with the
“hardware ID” and only makes reference to the previous update password. “One Time Password”

simplifies update maintenance of the software manufacturer.

Additionally, the “New Tag” and “New Password” provided to the user are related to each other.
The user cannot modify either of the two. If the highest bit of “New Tag” is 1, the update password is
only valid for a specific dongle. In the information the user offers to the software developer, only the
hardware ID and the previous update password are necessary. The last “New Tag” is merely a
reference to the software manufacturer and it does not affect the next update information. The software
manufacturer should set a new “New Tag” as the update mark different from the previous ones for each

update operation.

28

ROCKEY6 SMART User Manual V1.3

The “UT” operation involved several steps that are described as follows:

1. The software vendor must first initialize the ROCKEY6 SMART dongle to set the Initial Remote
Update Tag (IRUT) and Initial Remote Update Password (IRUP). Here, we suggest you to set initial tag
and password for later use even if you do not plan to use this feature for the moment. The IRUP cannot
be set as a single “F” in all size; similarly, a single “0” in all size is unacceptable for the IRUT value input.

See Figure 5-1 for detail:

Remote update management @

115t new IRURP [Developer] 2] Get remote update info [End uzer)
Iital remote flag | 00000000] Hataware 1D
S o Current flag
Initial pasgword (111111111111 11 1M [
= Basswonds e
Set it] [Arcquire information
A Acquire update pazsword [Developer] A1V enfy remote update pazswaord [End uzer]
Hardware I Mew flag

Mew uzer flag

Current password |00 000000000000 00 |

MHew pazsward _.EIEI (0 00 00 00 00 00 0o

Acquire update pazsword] [Yerify update password

|lpdate password

Tipz:

1. The firgt =tp must be processed after the [C card has been formated

2. &l of the data iz heradecimal numberz, The "flag’ and V10" are 4 bytes [ie "3F420300"). The password iz 8
bytes [ie " FF 03 02 01 AB 00 FF FF")

Figure 5-1

This step is the initial step of SW vendor before handing the ROCKEY6 SMART to the end user; in
addition, since it's a one-time-only operation, the reset of IRUP is based on the reformat of ROCKEY6
SMART in a grain. For instance, we set IRUT as “0x00000001” and IRUP as “11 11 11 11 11 11 11 11"
respectively, and it is recommended for you to use a more complex hexadecimal-string in the practical

application.

29

ROCKEY6 SMART User Manual V1.3

2. When user needs to update software in a remote way, it is necessary for them to provide
hardware-related information to the SW vendor, which including the hardware serial number, current
tag, and current password, except the condition that all of these data had been recorded by SW vendor

already.

¥& RemoteUpdate

Mew Tag: I

|Jpdate Tag

Mew Pagsword, —

Device [nfo
Llpdate File

Hardware Serial: SEO7DZEA

Currnet Tag: FFFFFFFF

b odule b anager

Lipdate Passward: FF FF FF FF FF FF FF FF

%

(=] (=]

Cannect to lack 0: ROCKEYE SMART 0

Figure 5-2

From the second step of this example, user may obtain all relevant information of his dongle by
using “Remote Update” Tool, and send these back to the SW vendor by all means; otherwise, SW
vendor may obtain this information relying on the code segment below if it is required to integrate the

remote update feature into those applications of their own.

30

ROCKEY6 SMART User Manual V1.3

unsigned char RemotePass[8];

// open the ROCKEY6 SMART here

errcode = DIC_Command(hic, GET_REMOTE_ INFO, cmddata);

RemoteTag = DIC_Get(cmddata, REMOTE_TAG, BY_ VALUE, NULL);
DIC_Get(cmddata, REMOTE_PASS, BY_ARRAY, remotePass);

// obtain the hardware ID (HID) of current ROCKEY6 SMART
errcode = DIC_Command(hic, GET_HARDWARE INFO, cmddata);
HardSerial = DIC_Get(cmddata, HARD SERIAL, BY VALUE, NULL);
m_HardSerial .Format(*'%08X", HardSerial);

// format character-string of hardware serial number
m_RemoteTag.Format(*'%08X", RemoteTag);

// format character-string of remote update tag

// format character-string of remote update password
m_Password.Format("'%02X %02X %02X %02X %02X %02X %02X %02X",
RemotePass [0], RemotePass [1] , RemotePass [2], RemotePass [3],
RemotePass [4], RemotePass [5], RemotePass [6], RemotePass [7]);

// close the ROCKEY6 SMART

3. SW vendor generated remote update password, one thing should be noted that, if the top digit of

the remote update tag is “1” (the first character greater than “8”), represents the “user update
password” is correlated with the “hardware serial number”; therefore, all passwords generated will be
unique to each other even with the same user tag altogether. On the other side, the “user update

password” is independent with the “hardware serial number” that user input if the top digit is “non-1”

value of the remote update tag.

4. Received “new tag” and “new password”, user may start to process remote update in this way,

and the “update tag” inside of the ROCKEY6 SMART will be replaced with the new one after update

31

ROCKEY6 SMART User Manual V1.3

successfully. This step can be implemented by using the “Remote Update” tool provided on SDK, or

you can achieve it in your application with following code segment embedded.

// set update tag as the new one generated by SW vendor (0x02)
DIC_Set(cmddata, REMOTE_TAG, BY VALUE, 0x02, NULL);

// set all new passwords as "0x22" to make a smple description here
memset(RemotePass,0x22,8);

DIC_Set(cmddata, REMOTE_PASS, BY_ARRAY, 0, RemotePass);

// verifty remote update tag / password

iRet=DIC_Command(Hic,CHECK_REMOTE_ INFO,&riInfo);

Following above steps in sequence, SW vendor may succeed in replacing the update tag inside of
ROCKEY6 SMART with the specific one to the user; in addition, if only keeping this example in hand,
preset the cryptographic algorithm inside of dongle and make judgment with method below (code

segment displayed) by internal program are quite feasible for the purpose to achieve the remote update

by SW vendor.

dword dwTag;
// Obtain remote update tag
get remote_ tag(&dwTag);
if(dwTag & 1);

//Do something
esle if(.)

//Do something else

else

We believe that all developers have much more knowledge in respect that how to load those

cryptographic algorithms into the ROCKEY6 SMART.

32

ROCKEY6 SMART User Manual V1.3

5.2 Update File

The ROCKEY6 SMART dongle supports Remote Update Management (RUM). The Remote
Module Management (RMM) function will verify the user’s identity, but it cannot update the external
program because the end user does not have access to the super password, which is required to write

to the dongle.

The SFT process allows the software manufacturer to securely update external programs or data
files without compromising the super password.
The update procedure is as follows:
1. The SW vendor creates a “Cipher text file” with their ROCKEY6 SMART dongle
2. The manufacturer sends this “Cipher text file” to their customers
3. The customer transfers the “Cipher text file” to the dongle with the program provided by the

SW vendor. The dongle will decrypt the “Cipher text file” and create a “Plain text file”.

The full process of implementing “Update File” can be referred to the Figure 5-8.

Supposed that the name of your executable file is “0x1000” and ID is “0x0001", there are three
solutions for you to update file with “update file” function, in combination with “update tag” information

described above.

v" Solution 1: All users are same
Introducing by the feature of “Remote update management”, if no new password for remote update
was generated after ROCKEY6 SMART plug-in, the “Cipher text file” created by SW vendor can be
looked as one applied-to-all; in that way, any user belonging to the same SW vendor has no need to
verify the remote update password to finish update operation overall (cannot be verified actually, it is

required to re-plug in the dongle if the password was verified already).

33

ROCKEY6 SMART User Manual V1.3

This solution is quite simple for SW vendor to implement without considering specific process of
remote update, just following such steps as: use IDE to encrypt the executable file with “Generate
cipher-text file” function, and send this “cipher-text file” (file output from the function of “Generate

cipher-text file") to end-user.

Generate ciphertext file

File zettings

Filename Qooo
File 1D 0001 |Fileclss |[FF | Seclevel |0

Fropertiez EXEC upignorne [] intemal

Content

oooo co 03 21 o0 OE 04 41 23
oofs 01 oo 52 27 04 04 C1 22
ooi1n 18 05 54 53 09 04 41 21
oois 01 o0 AD 50 08 04 21 21
oozo 1F o0 E0 24 07 04 01 21
oozge FF 07 E7 50 OF 04 61 23
0030 0& 04 E2 03 0D 04 21 23
o35 08 08 00 083 0C 04 01 23
0040 06 04 41 22 OB 04 E1 22
0048 06 383 FA 22 07 38 DA 20
Oos0 01 38 94 22 04 38 Ba 22
o058 02 28 94 20 02 38 74 20
ooed 05 383 14 23 03 38 74 23

oogs 19 38 14 28 08 10 Ce 00
AN70 N8 10 94 07 N3 N8 837 10

A

Figure 5-3 Generate cipher-text file

While receiving this “cipher-text file”, the user needs to decrypt it with “Generate plain-text file”
function, and keep this “plain-text file” storing inside of the Rocky6 Smart. After that, updated software
can be utilized by user in the normal way; moreover, user can complete the full process of remote

update with the help of “Remote Update” tool.

34

ROCKEY6 SMART User Manual V1.3

¥8 RemoteUpdate

Mew T ag:

pdate Tag

MNew Pasgword: — —

|lpdate File

|Ipdate File

L Add File J [Remove File]

File Lisk

Fodule Mananer Eilfnst.cf

EZ

Connect to lock 0: ROCKEYS SMART 0

Figure 5-4 User Remote Update

If SW vendor plans to integrate this remote update feature with applications of their own,
understanding the “PLAINTEXT_FILE” macro is a prerequisite, which was used to generate plain-text
file inside of the ROCKEY6 SMART. Specifically, pass this macro to "DIC_Command” at first, and make
the memory of plain-text file pointing to the "cmddata” variable, a plain-text file will be generated inside

of the dongle in this way, see code segment below:

memcpy(cmddata, c_exefile, exesize);

errcode = DIC_Command(hic, PLAINTEXT_FILE, cmddata);

Note:

"c_exefile” is the buffer stored cipher-text file, "exesize” is the size of cipher-text, "hic” is the handle

35

ROCKEY6 SMART User Manual V1.3

of ROCKEY6 SMART which was opened without super password verification

v Solution 2: Part of User is same
During the initialization process of remote update tag and password, set the “Initial remote flag”
and “Initial password” as the same value for part of user and make sure the top digit of “Initial remote
flag” as “0”, thus SW vendor may process update respecting a specific set of user, making sure the

update file are same for all of them.

Using this solution, it is necessary to take consistent manufacture-settings respecting “Initial
remote flag” and “Initial password” to the same type of Rocky6 Smart in a batch mode; here, we

supposed to set both of two settings as “1” for the simple explanation.

Burn multiple cards

Remate update initial zettings

"irkual file ' eshheil L2\ BockeyS mart, v

[] Config remote update settings

B ;D | Update Hag , OEa0g :
Volume |DEFAULT VOLUME || passwod [P
Makerinfo |DEFAULT ATR | | Fetumstatus

Support BSA/DES Yes: Support extended
Ifload R54_DES library :
FPazzwaord |

It load floating [Float] ibrany '
Confirm |

[] Change Super Pazsword

Frepare for burning

|

Burn | | Cloze

Figure 5-5 Set “Initial remote flag” and “Initial password” when burning in batch mode

36

ROCKEY6 SMART User Manual V1.3

After successfully setting “Initial remote flag” and “Initial password”, SW vendor can send these
ROCKEY6 SMART dongles to their end user. Following steps are necessary to implement remote
update:

1. Enter a “New user flag” and “Current password” against the third step (“Acquire update
password”) on the main screen of “Remote update management”, here we take “22222222" as the
“New user flag”. Clicking the button “Acquire update password” will generate the “Updated
password” and appear in the field below, keep information of “New user flag” and “Updated

password” in safe place for later use.

Remote update management E

11 5et new IRUP [Developer] 2] Get remate update info [End user]

Irital rernate flag | 00000000 i Hardazie DE | ST

S — Current flag | FFFFFFFF
Initial password | FF FF FF FF FF FF FF FE [
= Pazzward FF FF FF FF FF FF FF FF
Setit] [Arcquire information J

[Status: acquire successhully

3] Acguire update pazswaord [Developer] 41 % erify remote update pazsword [End uzer]

Hardware |0 Mew flag

Mew uszer flag 22222222 [?
z = Mew pazzword |00 00 0000 00 00 00 00
Current pazsword (111717 711111111 11| "

Acouire update password] [Yerify update pazsword]

|lpdate pazzword

Tips:

1. The first stp must be proceszed after the |C card has been formated

2. &l of the data iz hexadecimal numberz. The “flag” and "D are 4 bytez [ie "3F420300"). The pazsword iz 8
bytes (ie "' FF 03 02 01 AE 00 FF FF™)

Figure 5-6

2. Return back to the main screen of “Real device” of IDE, click option on menu to generate

Cipher-text file, which involves relevant information about remote update. At such case, SW vendor

37

ROCKEY6 SMART User Manual V1.3

can send their user all of this information, including “New remote flag”, “Updated password”, and

“Cipher-text file” just generated.

3. Received these information, user may update at client-side based on the tool of “Remote
Update”. Enter the “New Tag” and “New Password” on the “Update Tag” tab screen in first step, and

click “Add File” button to select specific files to add into the “File List” show below.

© Remotellpdate

NeiTas 22222222
Update Tag Mo Bosspicic ia& ZF 0D FABCERBA CE
J Ilpdate File

|Ipdate File L add File J [Femove File]

File: Lisk
C:besk, ckf

Fodule M ananger

N

iHeturn ghatug: I=00000000 Update success

Figure 5-7

The remote update process, at the end, is completed in full-range.

v Solution 3: User unique to each other

If setting the top digit of “Initial remote flag” as “1” during the period of ‘set New IRUP”, that is to say,

38

ROCKEY6 SMART User Manual V1.3

the value of “Initial remote flag” greater than “0x8000000000", the “Updated password” generated by
remote update is relevant to the hardware serial number of Rocky6 Smart, thus making sure “update
files” of all user are unique to each other. Comparatively speaking, this solution and “Part of User is
same” solution are about equal except that the “Initial remote flat” is set to “1”, and more important, SW
vendor have got to provide each user the only “update files”. Due to the large number of user, SW
vendor could not update user by manually operating tools, but with the help of program running. During
manufacture-initialization, it is approved to apply the “Burn real card” function of the first solution that all
“Initial remote flag” and “Initial password” of ROCKEY6 SMART will be set to the same value, with the

condition that the “Initial remote flag” had not been used elsewhere.

While updating, SW vendor generate cipher-text file with some basic information obtained by user.
Before writing code, it is a must for SW vendor to understand the “CRYPTOTEXT_FILE” macro, which
is used by ROCKEY6 SMART to complete the operation of “Generate Cipher-text file”. The command
buffer required by this macro includes a “DISCT_File” in the forefront and data of the file next to it. The
macro is used in the same way with the process of generating a file and writing data inside; whereas, it
is a one-pass operation by “CRYPTOTEXT_FILE”, and store the generated cipher-text file into the
buffer pointed by the variable of “cmddata”. All important data can be copied from the buffer to a file and

kept in safe mode for later use.

Operation to obtain “Initial remote flag”:

// set "New user flag" as 0x02

DIC_Set(cmddata, UPGRADE REMOTE_TAG, BY VALUE, 0x02, NULL);

// enter the hardware serial number to Roceky6 Smart of real user (supposed
to be 0x7A85728C)

DIC_Set(cmddata, UPGRADE_ HARD_SERIAL, BY_VALUE, Ox7A85728C , NULL);

memset(buffer, 0x02, 8);

// set all "New password" as 0x22

39

ROCKEY6 SMART User Manual V1.3

DIC_Set(cmddata, UPGRADE REMOTE_PASS, BY_ARRAY, 0, buffer);

errcode = DIC _Command(hic, GET UPGRADE_REMOTE_PASS, cmddata);

// put latest "Updated password™ into the ""RemotePass"

memcpy (RemotePass, cmddata, 8);

DIC_Set(cmddata, FILL, 512, O, NULL);

// clear all

DIC_Set(cmddata, FILE_ID, BY_ VALUE, 0x0001, NULL);

// file ID

DIC_Set(cmddata, FILE_CLASS, BY_VALUE, Oxff, NULL);

// Tile type

// Tile properties

DIC_Set(cmddata, FILE_ATTRIBUTE, BY_VALUE, FILEATTR_EXEC, NULL);

// Tile size

DIC_Set(cmddata, FILE SIZE, BY VALUE, READDATA SIZE, NULL);

// name of executable file 1000

DIC_Set(cmddata, FILE NAME, BY ARRAY, O, "1000");

DIC_Set(cmddata, FILE_DATA, BY_ARRAY | READDATA SIZE, O,
(char*)g_progReadData) ;

// fTile content

// generate plain-text file

errcode = DIC_Command(hic, CRYPTOTEXT_FILE, cmddata);

exesize = DIC_Get(cmddata, FILE_DATA, BY_ARRAY, c_exefile);

Note:
Bothe "cmddata” and buffer are buffer with enough space, "RemotePass” is an 8-byte
array, "c_exefile” is used to store the returned cipher-text file, hic is a handle opened with super

password verification, and "TREADDATA_SIZE” is the size of plain-text file.

40

ROCKEY6 SMART User Manual V1.3

Following code segment can be used by SW vendor, in programs running on the client-side:

// set "update tag"” as the same value with the new "Initial remote flag"
generated by SW vendor(0x02)

DIC_Set(cmddata, REMOTE_TAG, BY VALUE, 0x02, NULL);

// set all of "new password™ as ""0x02" for simply description

memset(RemotePass,0x22,8);

DIC_Set(cmddata, REMOTE_PASS, BY_ARRAY, 0, RemotePass);

// verifty "New flag™ and "*New Password™

iRet=DIC_Command(Hic,CHECK_REMOTE_INFO,&rInfo);

memcpy(cmddata, c_exefile, exesize);

errcode = DIC_Command(hic, PLAINTEXT _FILE, cmddata);

Note:
cmddata is a buffer with enough space, RemotePass is an 8-byte arrary, c_exefile is the buffer with
cipher-text file storing inside, exesize is the size of cipher-text file, hic is the handle of opened

ROCKEY6 SMART

A point should be taken in consideration respecting above three solutions, the operation of ‘secure
file transfer” and “remote update tag” is operating concurrently if solution 2 and solution 3 were applied.
Further speaking, SW vendor set the “New tag” and “New password” to their ROCKEY6 SMART based
on the dongle-related information from the client-side; with this “New password” at hand and “Updated
password” saved already, process “Generate Cipher-text file” and send user above three files
altogether; after that, user may generate plain-text file on the condition that the “New tag” and “New
password” had been verified successfully. Mind out the SW vendor’s operations of obtaining new
password and generating cipher-text file are in the same time, dongle plugging-out or re-opening is
forbidden in the midcourse; in the same manner, the verification of new password and new tag on
client-side are one-step operation, or all correlations between generated cipher-text file and remote

update information are of no effect, like the solution 1 described before.

41

ROCKEY6 SMART User Manual V1.3

SW Vendor @

Get information of
“Hardware ID”, “Current
flag”, and “Password”

Set “Initial remote
flag” and “Initial
password”

Send SW vendor above
information of individual
Rockey6 Smart dongle

Release S/W and
Dongle together

A
Acquire remote update
information sent by SW

vendor (such as cipher-text

file etc)

Waif for User Remote
Update

Relative to the
Remote Update

Relative to the
Remote Update

Password? Password?
N
N
Verify “New flag” and
Obtain “New “New password” of remote
password” update
Y «———— Y 4&———
v
“Generate Cipher-text “Generate plain-text
files” files”

Send user all data
for remote update

Use dongle ina
right way

Figure 5-8

5.3 Remote Module Manager

Remote module manager includes three parts: setting module definition file, creating module
authority file and setting dongle information module in bulk. For the ROCKEY6 SMART SW vendor, to

manage the remote module requires two steps: firstly, define a module definition file using the module

42

ROCKEY6 SMART User Manual V1.3

definition function; then sent it to the user. The users convert the module definition file to the module
request file according to the actual module they purchased. Secondly, the SW vendor generates the
module authorization file from the users module request file, and sends it back to the user again. As
soon as it was received, user my start to update the ROCKEY6 SMART without delay based on the
module authorization file. If SW vendor make clear of the required module files for each user, the first
step can be completed all by SW vendor alone, that is, sending user the required module files is the
only step for SW vendor to operate in a direct way. “Remote Module Management” comes down to four
steps listed in below:
v' By using Integrated Development Environment of ROCKEY6 SMART (IDE), SW vendor defines
the module files (.mod), including all executable files contained in the module and Open/Close status,
and sends this file to the end-user.
v' By using “Remote Update” tool of client-side, user generates module required files (.mrg) with
specific requirement definitions, and sends it back to the SW vendor.
v' With the help of IDE, SW vendor generates module authorization file (.auh) based on the module
required files of particular user, and again sends it to the end-user.
v' Aiding by “Remote Update” tool, user selects download authorization and begins updating. The
Open/Close status inside of the ROCKEY6 SMART can be controlled after update with success.
Note:
Module Update needs to be used in conjunction with Remote Update Tag. All of above description

can be implemented with APIs provided by ROCKEY6 SMART.

Module Definition

Choose and fill “Module definition” from operation types, and add it to the “file path” via a browser.
Then click the “Add” button. A module window will pop up. Input the module name for “Module”, and
choose the dongle file. Click “OK” to add the module. Once back to the “Remote module management”

window, click the “Add” button to add more modules. If more files need to be added into a module, all

43

ROCKEY6 SMART User Manual V1.3

then that is required is to input the same file names into the “Add Module” message box. Once the
module is added, click the “Open/Close” button to modify the state of the module. Finally click

“Generate file” to create the module definition file.

Add Module [X]
b odule: | V| | 0K,
Fie: | 0004 v | [Cancel

Figure 5-9 Adding a module

¥8 RemoteUpdate

Mew Tag: I22222222

pdate Tag

Mew Pazsword: i3.f-‘-. 2F 0D FABC EG BA CE

todule k anager

Update File
Liptaiefie (%) Define Requirement(D) () Download Autharization(a)

EH\CDiRockey&Smart_SDK_EN_070712 on 192.168. [Browse

Module n... FilelD Lisk Skatus

[Open,l'CInse] [Eenerate File]

EZ

iHeturn gtatus T=00000000 Update success

Figure 5-10 Remote module management

44

ROCKEY6 SMART User Manual V1.3

Module Authorization

To generate an authorization file, the developer can convert it simply according to the received
user request file. That is, choose “Module authorization” from “Operation Class”, then browse the files
and add the user request file. After that, all user requests are listed. The developer can open and/or
close any modules as required. Click “Generate file” to finish the module authorization procedure. The

last thing is to send the generated file to the user for updating.

¥8 RemoteUpdate

Mew Tag: I22222222

Update Tag W0 B asspitid: ia& 2FODFIBCEGBALCE

todule k anager

|Ipdate File

() Define Requirement(D) (%) Download Authorization(a)

EH\CDiRockey&Smart_SDK_EN_070712 on 192.168. [Growse

hadule Manager Module n... FileID List Stakus

CpenfClose aernerate File

EZ

Connect to lock 0: ROCKEYS SMART 0

Figure 5-11 Remote authorization management

45

ROCKEY6 SMART User Manual V1.3

5.4 Instruction of Remote Update on Client-side

The Remote Update Tools on client-side mainly involve three parts, which are Remote Update, |.e.
remote updating tag for user; Remote File Update, i.e., updating token-inside files of end-user in virtue
of the method of secure file transfer; and Module Management feature, which need to cooperate with
the first section and proceed only after the verification of remote update password. Under \Tools folder
of the Install SDK you may find this Remote Update Tool (RemoteUpdate.exe), all above features will
be implemented through the invocation of API functions; more important, software developers could

encrypt it to their customized tools according to their respective requirements.

Remote Tag Update

Two steps are necessary for user to handle remote tag update; first of all, user need to inform the
manufacturer the data within the field of "Card Information”, new tag and password, therefore, will be
created based on these information by manufacturers; and next step, user receive these new logo and
password and enter into the two fields below the "Remote Update" title, and click the "Update" button
on the left panel to start update. Note, if module management is required for this update operation,
please do not click "update" button until the module update is completed, and remote tag will update

immediately after this.

Remote File Update

While it is necessary to handle update, manufacturer will send user some update-need files by way
of secure file transfer. What user needs to do is just use the "Remote File Update" feature of this tool to

add files in turn into the "Update File list", and click "Update" button on the left panel to start update.

46

ROCKEY6 SMART User Manual V1.3

Module Management

v' Define Requirement
Clicking "Browse" button to select a module definition file, then choose the specified item and
handle "Close/Open" operation based on the file ID List. In the end, click "Generate File" button to

generate a module requirement, which can be sent to the manufacturer by the user.

Download Authorization

Manufacturer generated authorized file based on the module requirement authorization and
subsequently send it to user to begin updating. It is requisite to enter the new update tag and password
into the field of "Remote Update Tag" before downloading authorization, and turn to "Module Manager"
to handle module update without verification of update tag and password. Selecting "Download
Authorization" radio button and browsing files, choose necessary "module authorization files" and click

"update" button on the left panel to start update.

47

ROCKEY6 SMART User Manual V1.3

Chapter 6 Production Management

Once you set up the C51 program, you can burn dongles in bulk. The steps are shown below:

Open ROCKEY6 SMART IDE, as shown in Figure 6-1.

& ROCKEY 6 SMART IDE v1.30.7.7K7 - [Real device (ROCKEY6 SMART 0)] M=
= File{F) EditiE) Wiew(y) Card operation{C) Tools(T) window(W) Help(H) — |
S e e REXEREROE
T = ROCKEYG SMFII.QT g || File (Folder) name 1 Class Size | ol... | Property | Securit...
g DEFAULT VOLUHE E ZF01 FF 15 aa Filz sys... 0O
@2000 2000 FF 2102 00 Exec 0
£l |
Ready file info row , coll

Figure 6-1 ROCKEY6 SMART IDE

Click the “File | Open Virtual Device” menu; then select the intended virtual card file (*.vcr) from the

pop-up window and open it, as shown in Figure 6-2:

48

ROCKEY6 SMART User Manual V1.3

&' ROCKEY 6 SMART IDE v1.30.7.707 - [Virtual card (RockeySmart.vcr)] |:HE|[E|
g File(F1 Edit(E) Wiewid) Card operation{C) Tool=(T) Window(W) Help(H) g X
ecldetrnaxBb ﬁa‘m@@
= & RockeySmart.ucr File ifolder) name | ID Class | Size Cl... = Property | Securit..
i) DEFAULT UOLUME E ZF01 FF 15 oo File sys... 0O
ﬁeadv file info row

Figure 6-2 Virtual device window

After choosing the executable file, right click your mouse, a menu will pop up as shown in Figure
6-3. Click “Burn”, the executable file is selected as in Figure 6-4, and its icon is changed. When an
executable file is selected to “Burn”, it can be downloaded to the real card via the “Burn real card”
function from the IDE. Otherwise, the executable file never downloads to the real card without selecting

“Burn”.

49

ROCKEY6 SMART User Manual V1.3

& ROCKEY 6 SMART IDE v1.30.7.707 - [Virtual card (RockeySmart.vcr)] |-_|I'E.||."£|
g File(F1 Edit(E) Wiewid) Card operation{C) Tool=(T) Window(W) Help(H) g X
ecldetr e xD REBOC
= ¢a RockeySmart.vcr Flle(FDIder}name I Class | Size cl.. Property | Securit,.
mmmn—nmm
4 DEFAULT UOLUHME @ Refresh
Select burn Farmat
Cancaibi B Modify password
[~ | Remote update management
B Copy Chrl+C
— Generate Ciphertext file
| e ; Generate plaintext File
¥ Delete Ctrl+Del
| [Cardinfo
1§ Display file context | - -
Import file [
-l ; B verify super password %
| ¢ Export file
@ Cancel verified status
| #5 Mew Folder !
. I Run
Burn the content on the virtual card inko the real card file info row

Figure 6-3 Choose the program to burn

The last step is to burn the selected program to the real card. Choose “card.vcr”,

your mouse. A menu will pop up as in Figure 6-4. Click “Burn to real card”, then a “Burn in bulk” window

will be shown.

50

and right click

ROCKEY6 SMART User Manual V1.3

& ROCKEY 6 SMART IDE v1.30.7.707 - [Virtual card (RockeySmart.vcr)] F_I[‘EI[“STI
g File(F1 Edit(E) Wiewid) Card operation{C) Tool=(T) Window(W) Help(H) (=]
ecldetr e xD REBOC
= ¢ RockeySmart.vcr ” File {folder) name | ID Class | Size | ClL.. Property = Securit...
SIDEEQULT UL b 2FO1 FF 15 00 Filesys.. O
& Refresh
Format

B Modify password
Remaote update management
Femote module management
Generate Cipherkext file
Generate plaintext file

Cardinfo

1tn real carc

B Verify super password

s

Cancel super passwaord

Burn the content on the virtual card inko the real card file info row

Figure 6-4 Burn to the real card

v" Burnin bulk
The “Burn in bulk” window contains “Volume”, “Manufacturer information” and “Remote update
information”. “Volume” is the name of the file system root directory in the dongle. “Manufacturer
information” holds all relevant information about the manufacturer. “Remote update information” can be
left without setting until the user really needs it. For details of remote update, please go to section “5.1 -

Remote update management”

51

ROCKEY6 SMART User Manual V1.3

Burn multiple cards

— = Femate update initial zethings
"irkual file et kel 2R ockeyS mart vo

[] Config remote update settings

Murmnber

i Update flag , .
lll'llll:llume :’EE‘F?&:ILILT.I;;IiI-LEIr:‘iE- | PaSSWDrd e ————— e
Makerinfo | DEFAULT ATR | Retum status

Support RSA/DES Yes Support extended
Ifload R54_DES library :
Fazzword |

If load floating [Float] ibram I
Confirm |

[] Change Super Pazsword

Frepare for burning

|

Burn l | Cloze

Figure 6-5 “Burn in bulk” window

When the real card is burnt, ROCKEY6 SMART can choose to download some library files as in

Figure 6-5.

Once the burning process is finished, all ROCKEY6 SMART project information will be recorded
into the “card.bfl” file. The user does not need to repeat the whole setting in the next burning process.
The “card.vcr” and “card.bfl” can be transferred to anybody who is going to burn a real card. All that is

required is to follow the steps as in “Figure 6-4".

If a program contains a numbers of projects, and every project is allocated with a file ID and file
name, several virtual devices should first be opened as in project (Figure 6-6). After that, copy all the
executable files from every virtual device to one virtual device (Figure 6-7). Finally, give the virtual

device with all setup executable files and “card.bfl” to the person who will do the burning process.

52

ROCKEY6 SMART User Manual V1.3

e e

~ Virtual card (RockeySmart, vcr)

= ¢ RockeySmart.vcr
‘g DEFAULT VOLUHE

File {folder) name

5]
& 200z

et REXBEBREBOE | T

o]
2F01
0001

CEx

Class Size Cl.. Property Securit...
FF 15 oo Filesys... 0
FF 53 oo Exec a

= Virtual card (Test11.vcr)
= e Test11.vcr File {Folder) name: s} Class Size | Cl.. | Property = Securit...
" g DEFAULT UDLUHE || F0LFF 1l 00 Filesys.. 0
alDDD ooz FF 53 oo Exec a
IReady file info- row |, column Murnk

Figure 6-6 Open multiple virtual devices in the same project

#) ROCKEY 6 SMART IDE v1.30.7.707 -

FilefF) EditiE) Wiew(v) Cardoperation(C) Tools(T) ‘Window(w) HelpiH)

e e

== Virtual card (RockeySmart, ver)

= ¢& RockeySmart.vcr
‘@ DEFAULT UOLUME

File ifolder) name

5]
&eo0z

LT RBXEREB O E |

D
2F01
oon1

Class | Size | Cl.. Property | Securit...
FF 15 [uli]} Fillesys... 0
FF 53 oo Exec a

= Virtual card (Test11.vcr)
= e Test11.uck File {Folder) name e} Class Size | Cl.. Property = Securit...
g DEFAULT UDLUHE 5] 2FOL FF 11 00 Fiesys.. 0
02002 0007 FF 93 oo Exec o
01002 0004 FF 93 oo Exec o
IReady file info- row |, column Murnl:

Figure 6-7 Copy the executable files to a virtual card

ROCKEY6 SMART User Manual V1.3

PART 2 Application Section

After finishing this chapter you will know how to use Keil u Vision2 to compile the kernel of your
encryption application and choose the corresponding API function, and you will also learn the

development procedure of ROCKEY6 SMART.

Chapter7, Debug with ROCKEY6 SMART Simulator
This chapter will describe how to configure the development environment of Keil u Version2.After

finishing this chapter the user will grasp some fundamental debugging procedures of Rocket6 SMART.

Chapter 8, Rocket6 SMART Essential
This chapter will show how to encrypt a program step by step from a simple sample. You will learn

how ROCKEY6 SMART protects your applications.

Chapter 9, API Reference of Communication with ROCKEY6 SMART

The user will learn how to use the API from this chapter.
Chapter 10, API Reference

This chapter is the continuation of the last. The user will learn more details of the API from a

sample.

54

ROCKEY6 SMART User Manual V1.3

Chapter 7 DEBUG WITH ROCKEY6 SMART
SIMULATOR

ROCKEY6 SMART Simulator is used for simulating all hardware functions for ROCKEY6 SMART.
The user does not actually need the hardware to perform the real card functions, as well as software
debugging and execution. Please note: ROCKEY6 SMART Simulator is based on the Keil uVision2
debugger. Therefore, it can only work for code that is compliant with the Keil environment. If users do

not need to debug the C51 program, it is not necessary to configure the simulator as well.

7.1 Configure Keil IDE

Before using Keil to develop ROCKEY6 SMART, some projects need to be set. Firstly,
copy "\TOOLS\Debugger\RySSimulator.dll” from the ROCKEY6 SMART installation folder
to "Kei\C51\BIN” and also copy "API32\Dynamic\dic32u.dll” to "kei\UV2", or copy "DIC32U.dII" to the
system folder. After that modify"TOOLS.INI" and append “TDRV4=BIN\RySSimulator.dll (“FEITIAN
RockeySmart Simulator”) “at the end of the “C51” block. “TDRV4” is the serial number and it can use

the next number to replace the number when it is occupied.

7.2 Create a project

To create a new project, open “Project” of KEIL UV2 and click “New Project”. Input the project

name in the pop-up dialog box and save it.
Choose 51 serial CPU when “Options for Target ‘Targetl™ appears. Users need to re-choose CPU

55

ROCKEY6 SMART User Manual V1.3

for the existing project without 51 serial CPU.

Options for Target “Target 1°

Device | Target | Output | Listing| €51 | 451 | BLS1 Lacate | BL51 Misc | Detug | Utiites |

Datahase:J Henic | [ata B aze J

Yendar: [nkel
Device: S0CHIEH [Use Extended Linker [L<51] instead of BL51
Farnily: MCS-51 [Use Extended Sssemblern (45 FsE

(L] 80/57L54 #) IMCS-51 CMOS zingle-chip 8-bit microcontraller with
[[3 80/57L58 32170 lines. 2 Timers/Counters, 5 Interrupts/2 priority levels,
(] 80214H 4K, Bytez ROM, 128 Eytes on-chip FAM

([B0328H
(] B0S14H
(] BO52¢H
[BOC15204
(£ BOC152IE
[C3 BOC152)C
[C3 BOC1521D
(13 BOC31EH
(3 eocaz
BOCH1EH
77 ANCE1EA o

i M
W

(] | Cancel Defaults

Figure7-1

7.3 Project Configuration

Click “Project” >"Options for Target ‘Target1™ to get high efficiency, use default setting (small model)

in Target menu as shown in Figure 7-2

56

ROCKEY6 SMART User Manual V1.3

Options for Target “Target 1°

Device Target | Qutput| Listing| C51 | 451 | BLS1 Lacate | BLET Misc | Detua | Utiites |

Intel B0CH1BH
¥tal [MHz): [~ Use On-chip ROM [0x0-04FFF]
temary b adel: |Small: wanables in DATA j
Code Rom Size: |Large: B4k, program j
Operating system: |None j
Qff-chip Code memony- Qff-chip ®data memony
Start: Size: Start: Size:

E prom Iili Fiam l—
Eprom Iili Fiam Ii
E pram Iili F am li

[Code Banking Stark: End: Ja

Banks: |2 = Bank Area: '] ' b 5
k. | Cancel | Defaults

Figure7-2

i

In Figure 7-2 “Project---Options for Target ‘Targetl’ “ page, tick “Create HEX File” and “Run User
Program #1” and type “hexbin.exe test.hex test.bin” in the text box. Additionally the name of “test.hex”
and “test.bin” will be changed according to the name of the project. Before using it, copy
\TOOLS\Debugger\hexbin.exe to the project folder. Please note, it is not necessary that you use this
option only for debugging your application; however it is necessary that your application is ready for
bulk burning to ROCKEY6 SMART by writing extended code using third party tools, because the BIN

file is an executable file in the ROCKEY6 SMART.

57

ROCKEY6 SMART User Manual V1.3

Options for Target “Target 1°

Device | Target Output | Listing| 51 | 451 | BLS1 Lacate | BLET Misc | Detua | Utiites |

| Select Folder for Objects... I M ame of Executable; |tESt

o Create Executable: Mtest

W Debug Infamation W Browse Information [Merge32K Hesfile

I Creste HEX File HEX Format: [HEX-80 |
(™ Create Librang: test LIE [~ Create Batch Fils
After Make
¥ Beep'when Complete [Start Debugging

™ Run User Program #1: Ihe:-cl:in.e:-:e test hes test.bin Browse. ..

I Bun User Program $2; I Browsze...

(E] Cancel Defaults

Figure 7-3

Select the simulator in the debug page and tick “Go till main”. When programming the ROCKEY6
SMART and debugging the program is required, the software developer has to tick “Go till main”. That

is for jumping over the initial code and jumping into the main function. Shown in Figure 7-4

58

ROCKEY6 SMART User Manual V1.3

Options for Target “Target 1°

Device | Target| Output| Listing| 51 | 451 | BLS1 Lacate | BLET Mise Debua | isites |

" Usge Simulatar Settings || ™ Use: |FE|T|,-'.\N RockeyBamart SimulatLJ Settings I
' | | K.l M onitar-51 Diriver '
[v Load Application at Startup [v Go till mainf] v Load|Keil ISD51 In-System Debugger [l main(]
hOMN330: Dallaz Contiguous b ode
Iritialization File: Iritializatid | PCO00 EPM E mlatarProgrammer
| J = FEITIAN RockeyBsmart Eiirnl.ilal.-:-r e
Fieztore Debug Sezszion Settings Feztore Debug Sezsion Settings
v Ereakpaints v Toolbox ¥ Breakpaints ¥ Toaolbox
v wiatchpaoints & P, I wiatchpoints
v Memory Display v Memaomy Dizplay
CPU DLL: Parameter: Drriveer DILL: Parameter:
S8051.0LL]SSDE1.DLL
Dialog DLL: Parameter: Dialog DLL: Farameter:
DPS1.0LL -p51 1TP51.DLL |-p51

(1] | Cancel | Defaults]

Figure 7-4

After this, clicking "setting” to configure the FEITIAN ROCKEY6 SMART simulator. If you connect
the real card then select the “Using real card” option. Whether choosing this option or not is dependant
on whether the user downloads the program into the real card to debug the program. Otherwise, the
user does not need configure this option and also can even debug the program without a real card as

shown in Figure 7-5:

59

ROCKEY6 SMART User Manual V1.3

Card Config

Virtual Card

E:AProgram Files\KeilUV2\HockeySma | _ | |
_ Cancel
File Setting -
File Name: 2000 File ID: 2000
Real Card

Using Real Card The Password is Valid!

|ROCKEY6 SMART 0 ~| |Refresh
FF FF FF FF FF FF FF FF Verify

Figure 7-5

LOAD

Eventually, configure the debugger for downloading. There will appear an icon *#* in the main
frame, which can be used for burning the program to the real card after the user debugs it. No matter if

burning to a real card or a virtual card, the aim of burning to a virtual card is getting ready for the bulk

burn. Details are shown in Figure 7-6.

60

ROCKEY6 SMART User Manual V1.3

Options for Target “Target 1°

Device | Target | Dutput | Listing| C51 | 451 | BLS1 Locate | BLS1 Misc | Debug Utilties
— Configure Flazh Menu Command

& Uze Target Driver for Flazh Programming

FEITIAM RockeyBzmart Sinulatar _vJ Settings |

b OM390: Dallaz Contiguousz Mode
" Use Exter LPCI00 EPM Emulator/Programmer
FEITIAM RockepBzmart Simulatar

Command: J

Arguments:

-

k. | Cancel Defaults

Figure 7-6

v" Add source file into project
“View” > "Project window” spread the tree and right click "source Groupl”; select “Add files to

Group” "source Groupl” to add the corresponding head file and library file in "APN\C51” into the project.

Shown in Figure 7-7:

61

ROCKEY6 SMART User Manual V1.3

¥ test - Bision2

Fil= Edit Wew Project Debug Flosh Peripherals Tools SwCS Window Help

'é’l@ﬂﬁ_' ﬁ A To T T T '_M:Uﬁl_é @_‘EE‘ i g [T
B iE # % A [Targer1 =
=l —
= =24 Target 1 Q|E|§I

Options for Group 'Source Group 1 5 part of the C51 Cowpiler package

c)] 1988-2002 Keil Elsktronik GmbH and Keil Software, Inc.

4 Rebuild barget : This code is executed after processor reset.
] Build targer

e this file use AS51 with the following inwvocation:
{TUP. 451

modified STARTUP,0EJ file to your application use the following
tion:

Remove Group 'Source Group 1' and it's Files

r ohject file list>, STARTUP.OBJ <controls:

« Include Dependencies

: User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory
; at processor reset can be defined:

L £ b henTire rerr ey ann nE TRATH memoe Ge olmeno 0 _IL‘
) Fites [(SP Regs | {1 Books Ul | v
= =
B =)
b
ASM ASSIGN BreakDisahle
[T F [T Buld_} Command /_Findin Files [14 [»
Add Files to current Project Group [z s INUM R

Figure 7-7

When debugging the program, RySSimulator.dll simulates the ROCKEY6 SMART and explains

and performs functionality as per the dongle. Therefore the user does not really need a card to perform

an operation on an executable file.

After adding”API32\C51\sys_api.h” and”small_mode.LIB” into the project, the user can debug and

burn the card. The user does not need to configure the output file. Output is controlled by Keil IDE and

the debugger.

7.4 Debugging

After performing the above configuration steps, the program will be in the debugging state. At this

62

ROCKEY6 SMART User Manual V1.3

point, the Keil uVision2's "simulator” can be used to debug (choose “Use Simulator” button from the
upper left part of Figure 2-3). However, there is one difference. - the register shows in menu “View >
Project Window” the VM51 register rather than the register of “Keil uVision2 Simulator” register. For

details of using and debugging “Keil uVision2”, please refer to its user manual.

7.5 Quit

To end the debugging process, “exit()” has to be used at end of the debugging program.
ROCKEY6 SMART Simulator will end once it executes “exit ()". It is the same as the user choosing the
“Debug > Start/Stop Debug Session” menu. In other words, if the user chooses the “Debug > Start/Stop
Debug Session” menu, the debugging process can be ended at any stage. If the PC pointer refers to

address “0”, the process will be restarted.

7.6 Sample Debugging

ROCKEY6 SMART Simulator will debug and test all examples under the directory “\samples\keil\”.
The results are exactly the same as the descriptions in the “readme.txt” file.
NOTE: The simulator cannot simulate the function "sys_recall”, because this function is meaningless in
the simulator. In addition, please do not use any other methods to generate the “BIN” file into the card
for execution. If you want to input the code into the card for execution, please choose “Download” from

the menu “Flash”, or you can click the tools bar “Download to Flash Memory” button.

63

ROCKEY6 SMART User Manual V1.3

7.7 Write Program to the real card

If the “Using Target Driver for Flash Programming” in the Utilities page is set, the program is ready
to write into the real card. The only thing that needs to be done is to select “Flash > Download” from

“Keil”. After that, the whole procedure is finished.

7.8 Summary

In all, ROCKEY6 SMART Simulator not only controls all compilation and execution of the “VM51",
but also provides all ROCKEY6 SMART services, such as various file operations, choosing files,
reading, writing, creating, float type calculations, and card information operations etc. With these

advantages, VM51 developers can easily use the simulator to debug VM51 programs.

64

ROCKEY6 SMART User Manual V1.3

Chapter 8 ROCKEY6 SMART Essential

8.1 Development Introduction

ROCKEY6 SMART is a programmable dongle, it has two development models: one is dongle
internal program; another is the external program that communicates with the program inside the
dongle. After the dongle software and hardware are setup, please follow the steps below to develop a

simple protection program.

8.2 Fundamental Usages

ROCKEY6 SMART dongle is developed by using C language. Developers need to study the
provided system functions usages before they deploy the dongle.

The following diagram represents the process for dongle configuration:

GetiModify |
EBasic Projact Core Cods w1 Language o €351 Project
Choose Core non-C Language Cruahe
Coda

Profect] Froject
Remowe Core Code Testimg
X .
Project Without | “omumueation |y 4y s | SmartCad | BuminBalk | i) Cand
Core Code Froduct Projact | Executable Fik Executable Fila
|

Figure 8-1 Development Process

Please consider the following algorithm: Input 15 bytes ID numbers, its output is 18 bytes numbers.

This is a simple message-digest algorithm. Assume these numbers are a part of critical code, and then

65

ROCKEY6 SMART User Manual V1.3

we save these numbers into the dongle. An example is as follows:

1 unsigned char Wi[18] = {7.9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1};
2 Char Ai [11]:{ll11’,1’01’,1’X1’,1’91’,1’81’,1’71’,1’61’,1’51’,1’41’,1’31’,1’211};

3 void ConvertiD(char ID[15],char newlD[18])

4 {

5 int i,j,s;

6 s=0;

7 memcpy (newlD, 1D,6);
8 newlD[6]=1";

9 newlD[7]=9";

10 memcpy(newlD+8, 1D+6,9) ;

11 For(i=0;i<17;i++)

12 {

13 J=(newlID[1]-48)*Wi[i];
14 s+=j;

15 }

16 s%=11;

17 newlD[17]=Ai[s];
18 }

Following is an example written in C51 C language. It will do the same thing.

unsigned char wi[18] = {7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1};
Char Ai [11] :{ll]-” B} 11011) 11X11) 11911) 11811) 11711 B} 11611) 11511 i 11411 , 11311 , 11211};

void main(void)

66

ROCKEY6 SMART User Manual V1.3

s=0;

byte ID[15],newlD[18];
get_input(1D,0,0,15); //Input ID numbers
memcpy(newlD, ID,6);

newlD[6]="1";

newlD[7]=97;

memcpy(newlD+8, ID+6,9) ;
for(i=0;i<17;i1++)

{

J=(newlD[1]-48)*Wi[i];

s+=j;

}

s%=11;

newlD[17]=Ai[s];

set_response(newlD, 18); //Output new ID numbers

exit(); //program ends
}

The 3rd line is the main function definition. The 8th line: “get_input(ID,0,0,15)" is used for receiving

the external input data. ID is buffer, parameter 2 means offset, 3 means the input data type, 0 means
byte and 15 means data length. The 20th line:"set_response(newlD, 18) " returns the data to the host

machine. In this function, “newlD” refers to the buffer address, “18” means the length of the output data.

“exit()” means program ending.

In the KEIL compile environment, C language id used. However, it is different to standard C

language due to its distinguished methods for defining variables. An example is: “unsigned char xdata

67

ROCKEY6 SMART User Manual V1.3

buf[128]". “xdata” means putting the variable into the “xdata” area. If a lager array is defined, it is
usually assigned at the “xdata” area in order to obtain enough memory space. Please refer to the C51

user manual for further details and features of C51.

8.3 Creating C51 Project

To convert the core code into KEIL C language, again create a C51 project. This part of the core

code can be compiled, debugged and downloaded to the dongle.

After creating a C51 project, please add your source code, SDK files: “API32\C51\Small_Mode.lib”

and”sys_api.h” into the project.

Once this step is completed, you can start to debug, compile and/or download your program.

8.4 Creating an Executable File in the Dongle

Once the project is created, the source code can be compiled and debugged. It can be debugged

using different methods, such as in steps or in blocks. See Figure 8-2:

68

ROCKEY6 SMART User Manual V1.3

EyFites [ress | Books

#include "sys_api.h”

woid maing)

x
=-#2d Terget 1
=] Source Group 1 »
[test.c /
[#] small_mode. 1ib

{

=

<@

thiz iz a simple example,you cen change it according to your need,

byte hlen=250;

byte xdata phData[250];
get_inputiphData,0,0,blen):
//te do: add your code here

set_response (blen,pbData) ;|

ﬂ Load "C:““KeilCSlProjects tesia|

>
ASM ASSIGN BreakDisable
o0 Command 6l =

For Help, press Fl

Lape

+ - pblata

Value

Lape

\ddress:

00030

x

102000000 [1

Aooonnooooaonn

0x0030:
0x003C:
0=z0048:
0x0054:
0x0060:
0x006C:
0x0078:
0=z0084:
0x0090:
0x009C:
0x00AS:
0x00B4:
0x00C0:
0x00CC:

24
24
0B
01
22
03

0o ES
03 ES
22 12
E5 OC
78 7F

oo oo

0A

24
24
oo
0z

01 E5 OB
04 E5

ES
ES

0&
s

D8 FD

0E
24
24

[\ Locals A Wistch #1 f Wetch #2 A Call Stck f

L:13 C:3L

[T 15T Memory 1 A Memory #2 J Metnory #5 J Merory #4 7

If the debugger meets the function “get_input” and/or "set_response”, it will display the following
window for data input or data content display. (The example will use “getversion” function).The
difference from running the card is when the debugger meets more “get_input” functions, it will display

more dialog boxes for user input. In debugging, the user can ignore this parameter. As shown in Figure

8-3.

Figure 8-2 Debugging Window

File Input

!

Input Output Data

nooooonn FFOFF FF FF FF FF FF OFF
o0oooons FF FF FF FF FF FF FF FF
QoooooLln FF FF FF FF 30 31 33 30 ...

Figure 8-3 Output Data

69

ROCKEY6 SMART User Manual V1.3

Once the code is successfully compiled, it can be downloaded to the card by using the discussed
method in the previous section. Now, if you open the IDE tool to browse real devices, you will find a file

with its name and ID being 2000. When the file is executed, it can dynamically fetch the files it needs,

and return the corresponding results. As shown in Figure 8-4, Figure 8-5.

. F.i|E {h;.h.jer} ;ﬁame
E

¢ 2000
&z

D Class Size | Clusker Property | Security level

ZF01 FF 15 aa File sys... 0O
2000 FF 2102 00 Exec 0
oool o FF AES aa Exec 0

Figure 8-4 Files In The Real Card

Input data

0012 34 12 24 00 00l 00 00 ~| [#input data
800 00 00 OO OO 00 00 00

1

100 00 00 00 00 00 00 00 Input data lenath

2000 00 00 00 00 00 1250 Bpte
2800 00 00 00 DO 0D

3000 00 00 00 00 00 :
38 00 00 00 00 00 00 Save to file(S)

Load from file(L)

“ || Quick edit(F]

Output data
Returm status
|Succesz (0126
|secand)

00 oo

Return length
[7

| Save to file(0]

‘wihen you run |C card program, if there iz any input data, pleaze input lenght of input
data" first; if there iz no input data, please input lengh of output data' first, Both of
them are decimal, and the unit iz byte.

Now, click the “Browse Real Device” button from the tool bar, then you can find the file. Once you

have finished all previous steps, a communication module needs to be created for communicating to

the card.

Figure 8-5 Simulated Executions

70

ROCKEY6 SMART User Manual V1.3

8.5 Editing and Encrypting Dongle Intercommunication Program

The steps for executing a dongle file:

Search Cpen Input Data o Gat Chutput
LDievice Device Setting Data

Figure 8-6 File Execution Steps

Following is a configured API that is used for communications between application programs and

the ROCKEY6 SMART dongle:

EXTERN_C int WINAPI DIC_Find(DWORD UID);

The function is used for dongles attached to the PC, based on the user code, and returns the total

numbers of attached dongle devices.

EXTERN_C int WINAPI DIC Open(int hic, char* reader_name);

Open a dongle from its index, and return the handle of the dongle

EXTERN_C int WINAPI DIC_Command(int hic, Int cmd, void* cmddata);

Sends commands to the dongle. The first parameter is the handle of the dongle; the second
parameter is command macro; the third parameter is the inputting/outputting structures for command
macro”"DIC_Set” and"DIC_Get” are described in detail at <<User Manual>>. Please note that these two
functions are not used for any dongle operations. They are simply used to set a buffer. The address of
the buffer can be transferred to the 3rd parameter of the function’DIC_Command” This buffer is the
required structure. For all structures supported C languages, it is not necessary to use these two
functions. According to the definition of the function’DIC_Command”, these languages can directly

work on the various structures based on different macros. The purpose of these two functions is to help

71

ROCKEY6 SMART User Manual V1.3

users to configure complicated data structures; especially for those languages which do not

support”struct”, such as VB etc.

Here is an example of converting the “ConvertID” to the function that can communicate with the

dongle:

1 void ConvertID(const char ID[15],char newlD[18])
2 {
3 DICST _Before Run_Data *bD=(DICST_Before Run_Data *)new char[48];

4 DICST_After_Run_Data *aD=(DICST_After_Run_Data *)bD;
5 int count=DIC_Find();//Search dongle

6 int hic=0;

7 for(int 1=0;i1<count;i++)

8 {

9 iT((hic=DIC _Open(i,NULL))>=0)

10 break;

11 3}

12 iT(hic==count)

13 return; //Dongle is not found

14 bD->RunID=0x2000; // Set the executable file name

15 bD->ParaSize=15; //Input the length of buffer

16 memcpy(bD->Para, ID,15); // Input buffer

17 int ret=DIC_Command(hic,RUN,bD); //Run the file and wait for the
return data

18 memcpy (newlD,aD->Result,aD->ResultSize); // Get return data

19 }

Now, the entire project protection work is done. The newly formed interface is the same as the

72

ROCKEY6 SMART User Manual V1.3

previous one, and it does not need to be modified for execution.

8.6 Core Code Selection

From the above example, we have introduced a fundamental software encryption protection
method. This example is quite simple and used for describing the idea only. Please do not use it directly
in your protection. Based on our experience, many users are using dongles for only searching if they
are attached to the PC, or only storing a piece of dispensable code inside the dongle. Dongles used in
this way cannot protect your software well. We recommend users take more time to configure their

dongles. Following are some important principles and methods used for dongle applications.

v' Code inside the dongle has to be vital. This part of code has to be saved inside the dongle.
Nobody can get to it without undergoing the valid verification procedures and the main program
cannot be executed entirely and successfully without this vital part of code. As a result, if hackers

attempt to avoid this piece of code the whole program cannot be executed successfully.

v' Try to choose the specific code that relates to your application. Since popular algorithms are well
known, software hackers can generally “guess” the functionalities of the code and simulate them to
crack the software. Based on the fact that most of our clients are skilled software programmers in their
own software applications, we recommend our clients to add their own special code in the dongle. It is
impossible for a hacker to know all the code from various application fields and the dongle containing
the special code would be too hard to be broken for a hacker. For example, a graphics programmer
could use part of the code from the graphic processing software in the dongle; a PC games
programmer could use part of the code from the artificial intelligence algorithms; a mechanical
engineer could use part of the code from the mechanics algorithms etc. In this way, the dongles would
have dynamic diversity for its security algorithm applications and would make cracking the software

too difficult to accomplish.

73

ROCKEY6 SMART User Manual V1.3

v" From the performance aspect, do not give a heavy workload to the dongle. The code inside the
dongle can be executed within the dongle. Since the speed of the dongle microprocessor is slower
than the PC CPU, the dongle usually creates a bottleneck for the entire computation. Therefore, do
not input the dongle code to an executing game, “ONMOUSEMOVE" of the interface program etc.
Please try to use this piece of code safely. Once it is correctly used, even with some complex

computation, the whole system may be slower but won't be crashed.

8.7 Summary

From the above, we have discussed the fundamental methods for using the software protection
dongle. Moreover, we have also shown how to separate and convert the code into C language. Finally,
we have described how to arrange the main program and communication modules of the smart card,

as well as how to choose core code in the dongle.

Again, please take more time for programming your dongle software. It is crucial for protecting your

software.

74

ROCKEY6 SMART User Manual V1.3

Chapter 9 ROCKEY6 SMART Communication
API Reference

9.1 int DIC_Find()

Category Description
Function Find dongle devices connected to the PC
Input No

Return value

If return value is less than 0, then it means the return value is incorrect.
Please refer to Appendix E for details.

If returned value is 0O, it means there is no connected device found.

If the returned value is greater than 0, then the returned value is the
actual numbers of devices. (NOTE: In most cases, although there are no
external devices attached, because device driver is installed in the PC;
then it looks to see if the external device exists. To ensure this, it is
necessary to use command “DIC_Open” to check if it is true.)

Theoretically, the maximum external connected card readers are 32.

Usage

Description

In most cases, this command is only used once when the program is
initiated by the user. It can result in some initiation work, such as listing
all internal card readers. If the user is using concurrent multi programs,
then it is only the main program that needs to call this command once.
If the user plugs physically in/out the external card dongle, it will not

cause any number changes for the displayed card dongle.

75

ROCKEY6 SMART User Manual V1.3

9.2 int DIC_FindByMgrCode(void * pMgrCode)

Function Search encryption devices connected to the computer

Input Manufacturer management code

Return value <0 :Error ,Refer to the error code

=0 :No device

>0 :Return the number of connected dongles

Usage Normally, this command is used for initializing the dongle and creating
Description the dongle list.
We recommend developers invoke this command at the beginning of the

main thread.

9.3 int DIC_Open (int hic, char* reader_name)

Function Open selected card reader

76

ROCKEY6 SMART User Manual V1.3

Input

hic

(1) Positive value is an enumerate value and is a
number of 0, 1, 2 ... which is in the range of returned
values of "DIC_Find()". If “reader_name” is not empty,
then its return value is the name of the card reader.
(2)Negative values, in this case, the parameter of
“reader_name” cannot be empty. “DIC_Open” will try
to directly use the reader name from the
“reader_name” to open the corresponded card
reader. If the card reader is a virtual device, then it is

the path of the file.

reader_name

It is a parameter of input/output, please see also “hic”

Return value

description

>=0 Represents success. The returned value is the
opened handler.

<0 The return value is an error code; please refer to

Appendix E for details.

Usage

Description

It results in establishing the unique connection to the connected device.

Once the operations are finished, the user should release the resources

held by the connection via command “DIC_Close”. It is more important

for using concurrently multi programs.

9.4 int DIC_Close(int hic)

Category Description
Function Close selected card reader
Input Card handler, it will be ok if it is the same as the “DIC_Open” returned

77

ROCKEY6 SMART User Manual V1.3

“hic”.
Return The return value is an error code; please refer to Appendix E for details.
Usage It is used for releasing the connection between the PC and external
Description devices. At the same time, clear the data and security state in the device

memory.

9.5 int DIC_Command(int hic, int cmd, void* data)

Category Description
Function Finish the operation for selected device
Input hic Device handle
cmd Specific operation; it usually uses various constants to
represent different operations. Please also see [cmd
Description] for details.
data All command related input/output data, please also see
[special data structure] description
Return The return value is an error code; please refer to Appendix E for details.
Usage It is a multi-functional command, all devices related to this operation are
Description accomplished by this command

[cmd Description]

Every command constant is already defined as a macro in “Dic32u.h”, referring to different
operations. Some of the macros may conflict with macros predefined under various integrated
development environments, and pre-compiling will not report such conflicts. If the syntax convention is

correct but cannot perform the corresponding functions, please take the relevant constants in

78

ROCKEY6 SMART User Manual V1.3

“Dic32u.h” as parameters or rename the related macros before they are used. Normally, there is no
need to care about the related data structures, use mode operation to get and set the data structures.

Detailed descriptions are available under “Dic_Det()" and “Dic_Set()".

Macro Data Structure Operations

GET_CARD_INFO DICST_Cardinfo Get smart card volume
and manufacturer

information

GET_HARDWARE_INFO DICST_HardInfo Get hardware
manufacture date, serial
number, shipping time

and COS version

GET_MANAGER_CODE DICST_ManagerCode Get management code;
include zone code,
reseller code and two

user’s codes.

GET_CARD_PRIVILEGE 1 byte Get card current
password verification
state. There are 3
returned values:
O(password not verified),
4(super password
verified), 8(remote

update password verified)

GET_REMOTE_INFO DICST_Remotelnfo Get remote update
information

SET_REMOTE_INFO DICST_Remotelnfo Setup remote update
information

79

ROCKEY6 SMART User Manual V1.3

CHECK_REMOTE_INFO

DICST_Remotelnfo

Verify remote update

information
GET_CURRENT_DIR DICST_Dir Get current directory
information
SET_CURRENT_DIR DICST_Dir Setup current directory
information
GET_CURRENT_FILE DICST_File Get current file
information
SET_CURRENT_FILE DICST_File Setup current file
information
GET_PARENT_DIR DICST_Dir Get upper directory
SET_PARENT_DIR DICST_Dir Setup upper directory

LIST_DIR Input 1byte index, specifying | List directory structure of
the file to be opened, index: | file system; itis
0-255. DICST_Dir or determined by the
DICST_File “FILEATTR_DIR” from the

returned data.

READ_FILE DICST_Before_Read Data | Read current file (first
and read file information, then
DICST_After_Read_Data its content)

WRITE_FILE DICST_Write_Data Write a file into the card

FORMAT_CARD

DICST_System_Info

Format the card

CREATE_DIR DICST_Dir Create a directory
CREATE_FILE DICST_File Create a file
REMOVE_DIR DICST_Dir Delete a directory
REMOVE_FILE DICST_File Delete a file

80

ROCKEY6 SMART User Manual V1.3

RANDOM

char array

Get a random number

RUN

DICST_Before_Read_Data

and DICST_After_Run_Data

Run an executable file

CRYPTOTEXT_FILE

none

Encrypt a file

PLAINTEXT_FILE

none

Decrypt a file

CHECK_SUPER_PASS

char data(]

Verify the super password

SET_SUPER_PASS

DICST_SuperPass_Data

Setup the super password

GET_UPGRADE_REMOTE

DICST_Upgrade_RemotePa

Get remote update

_PASS Sss information
DESENC DICST_Des_Data and DES encryption
DICST_After_EncDec_Data
DESDEC DICST_Des_Data and DES decryption
DICST_After_EncDec_Data
RSAGENKEY DICST_Rsa_GenKey RSA generates key pairs
RSAENC DICST_Rsa_Data and RSA encryption
DICST_After_EncDec_Data
RSADEC DICST_Rsa_Data and RSA decryption
DICST_After_EncDec_Data
GETFREESPACE Returned value is a DWORD | Get the remaining space
of the file system
SETCOUNTER Inputted value is a DWORD | Begin the maximum using
counter
STEPCOUNTER none reduce the using counter

numbers in each step

[Special Data Structure]

All operations of data structures can be accomplished with mode operations in “DIC_Get” and

81

ROCKEY6 SMART User Manual V1.3

“DIC_Set". Normally, there is no need to care about these data structures, it is not recommended to use

the structures, because it would reduce their transferability.

DICST CardInfo /*Set by the software developer */
typedef struct{

char volume[16]; //Dongle volume

char atr[15]; //Manufacturer information

} DICST CardInfo;

DICST _Hardlnfo

/*Information set by Feitian, software developer is not authorized to modify
it/

typedef struct{

DWORD FactoryTime; //Manufacture date

DWORD HardSerial; //Serial number

DWORD ShipTime; //shipping time

DWORD COSVersion; //COS version

} DICST HardInfo;

DICST_ManagerCode

/*Information set by Feitian, software developer is not authorized to modify
it */

typedef struct{

WORD Zone; //Zone code

WORD Agent; //Reseller code

WORD Userl; //User code 1

82

ROCKEY6 SMART User Manual V1.3

WORD User2; //User code 2

} DICST_ ManagerCode;

DICST_Remotelnfo /*Set and commented by the software developer*/
typedef struct{

DWORD RemoteTag; //Remote update tag

BYTE RemotePass[8]; //Remote update password

} DICST_Remotelnfo;

DICST Dir

typedef struct {

WORD dirid; // Directory ID

BYTE dircla; // Directory category

BYTE diratrpri; // Directory attribute & directory security level
WORD dirsize; // Not used

char dirname[16]; // Directory name

} DICST_Dir;

DICST File

typedef struct {

WORD fileid; // File ID

BYTE filecla; // File class

BYTE fileatrpri; // File attribute & file security level
WORD filesize; // File size

char filename[l1l7]; // File name

} DICST File;

83

ROCKEY6 SMART User Manual V1.3

Definitions of diratrpri(directory attribute) and fileatrpri(file attribute)

Label Type

FILEATTR_NORMAL Normal data file

FILEATTR_EXEC Executable

FILEATTR_DIR Directory

FILEATTR_UPIGNORE If the current security level is already higher than the

executable program, the program cannot be executed.

FILEATTR_INTERNAL File used by internal program and cannot be operated
externally. If an executable file is marked as internal, it
has hiding properties, such files can be viewed when

listing directory only if the super password is verified.

DICST Upgrade RemotePass /*Used in remote update management*/
typedef struct{

DWORD RemoteTag; //Remote update tag

DWORD HardSerial; //Hardware serial number

BYTE RemotePass[8]; //Remote update password

} DICST_Upgrade_RemotePass;

DICST Before Read Data
typedef struct{

WORD offset;

84

ROCKEY6 SMART User Manual V1.3

WORD size;

} DICST Before Read Data;

DICST_After_ Read Data

typedef struct{

WORD readedsize;

char buffer[l]; // The size is readsize

} DICST_After_ Read Data;

DICST Write Data

typedef struct{

WORD offset; //File offset

WORD size; //File size

char buffer[1l]; // The size is size

} DICST_Write_Data;

DICST_System Info /* Set the dongle volume and vendor information after
formatting*/

typedef struct{

char volume[16]; //Volume

char atr[15]; //Manufacturer information

} DICST_System_Info;

DICST _Before Run_Data
typedef struct{
WORD RunlID; //File 1D

WORD ParaSize; //Parameter size

85

ROCKEY6 SMART User Manual V1.3

BYTE Para[l]; // The size is ParaSize

} DICST Before Run_Data;

DICST After_ Run Data

typedef struct {

WORD ResultSize; //Byte number of return parameter
BYTE Result[l1]; // The size is ResultSize

} DICST_After_Run_Data;

DICST_SuperPass_Data

typedef struct {

BYTE MaxTryTimes; //Maximum retry number, should not be O

BYTE SuperPass[8]; //Super password, can not be all 0, otherwise i1t Is locked.

} DICST_SuperPass Data;

9.6 int DIC_Get(void* target, int p1, int p2, char* pstr);

Category Description
Function Get data
Input target Source data buffer
pl Mode/shift, if the highest bit is 1, then it is a mode operation;
otherwise, it is a user defined shift value

86

ROCKEY6 SMART User Manual V1.3

p2 Return mode / size, the highest 2 bits represent return

mode, others indicate the operation size

pstr Character type buffer where the data is obtained

Return If return mode is BY_VALUE, the return data is the data required by the
user. If it is BY_ARRAY, the returned value is the data length of pstr
buffer. If it is BY_STRING, the returned value is the character string
length of pstr buffer.

Note: For some model operations like vendor information, no matter
what return mode is set, it will return from pstr. Then if pstr is set to

NULL, the return of -1 indicates that the required operations can not be

performed
Usage The data pointer in DIC_Command can be regarded as a structure
Description pointer in C. But for many languages that do not support ‘structure”,

DIC_Get and DIC_Set are for storing to / getting from the ‘structure”

[p1 description]
For the p1 parameter of DIC_Get and DIC_Set, some macros are defined to specify the operation

objects. The highest bit of the macros is set to 1. The following are the pre-defined macros:

Macro Description
FILL Fill
ATR Manufacturer information

87

ROCKEY6 SMART User Manual V1.3

VOLUME

Volume

FACTORY_TIME

Manufacture date

HARD_SERIAL Hardware serial number
SHIP_TIME Shipping time
COS_VERSION COS version

ZONE Zone code

AGENT Reseller code

USER1 User code 1

USER2 User code 2

DIR_ID Directory ID
DIR_CLASS Directory category

DIR_ATTRIBUTE

Directory attribute

DIR_PRIVILEGE

Directory privilege status

FILE_NO File number
DIR_NAME Directory name
FILE_ID File ID
FILE_CLASS File category

FILE_ATTRIBUTE

File attribute

FILE_PRIVILEGE

File security level

FILE_SIZE File size

FILE_NAME File name

WRITE_DATA Write data

READ_DATA Read data

RUN_DATA Runtime input/output data
RANDOM_SIZE Random number size (in byte)
REMOTE_TAG Remote update tag

88

ROCKEY6 SMART User Manual V1.3

REMOTE_PASS Remote update password
UPGRADE_HARD_SERIAL Hardware serial number
UPGRADE_REMOTE_TAG New remote update tag
UPGRADE_REMOTE_PASS New remote update password
REMOTEPASS_STATUS Remote update status
SUPERPASS_STATUS Super password verification status
SUPERPASS_DATA Super password

[p2 Description]

For the p2 parameter of DIC_Get and DIC_Set, the highest 2 bits indicate data transfer or return

mode, the default value of the lower 30-bit is O, if not, it refers to the operation byte number.

Macro Description

BY_VALUE Value transfer

BY_ ARRAY Array transfer

BY_STRING In term of character
[Example]

// 1T the highest bit of pl is not 1, then the function is to get the user
data.

char tstr[] = "Hello World!";

char pstr[20];

DIC_Get(tstr, 3, BY_ARRAY | 5, pstr);

Then, the content of pstr is "lo Wo", 3 is the shift value, and 5 is the size.

89

ROCKEY6 SMART User Manual V1.3

9.7 int DIC_Set(void* target, int p1, int p2, int p3, char* pstr)

Category Description
Function Data setup
Input target Target buffer zone
pl Mode/shift, if the highest bit is 1, it is a mode operation,
otherwise, it is user defined shift value
p2 Transfer mode/ size, the highest 2 bits specify the transfer
mode, others indicate the operation size
p3 Normally, it is the user value to be stored
pstr Character type buffer of the source data, it can be NULL
Return 0 means success, otherwise is —1.
[Example]

DIC_Set(data,

FILL, 256, 0O, NULL);

// Clear the 256-byte data

DIC_Set(data, FILE_ID,

BY_VALUE, 0x2100, NULL);

//Set the file ID in the data

DIC_Set(data, RUN_ID,BY_VALUE, OxA1B2, NULL);

//Set the file ID to be executed In the data

9.8 int DIC_GetVersion(char* ver)

Category

Description

Function

Get the dynamic library version

90

ROCKEY6 SMART User Manual V1.3

Input "ver” is used to return the version number of the dynamic library.
The content is: [V/R]xx.yy
For example: R01.10 means it is the “real card dynamic library version
1.10” Another example:"R03.02” means it is “virtual card dynamic library
version 3.02".

Return An error code is returned, please see also Appendix E

9.9 Returned Error Code

Code(hex) Code(decimal) Description

0x00000000 0 Correct, no error.

0x80100001 -2146435071 Internal connection check failed

0x80100002 -2146435070 Operation is terminated by the user

0x80100003 -2146435069 Incorrect operation handler

0x80100004 -2146435068 Incorrect parameters

0x80100005 -2146435067 Invalid registering information or the information is lost
0x80100006 -2146435066 No enough memory to accomplish the instruction
0x80100007 -2146435065 Internal overtime

0x80100008 -2146435064 The user defined buffer is too small to hold all returned data
0x80100009 -2146435063 Card reader is unknown

0x8010000A -2146435062 User assigned time exceeds

0x8010000B -2146435061 The card is occupied by the other connection
0x8010000C -2146435060 There is no card in the card reader

0x8010000D -2146435059 Unknown card type

0x8010000E -2146435058 Card reader is unable to quit card operation

91

ROCKEY6 SMART User Manual V1.3

0x8010000F -2146435057 The current card does not support the user defined
communication protocols

0x80100010 -2146435056 Card is not ready for receiving instructions

0x80100011 -2146435055 Some variable values are invalid

0x80100012 -2146435054 Operations are terminated by the system. You may need to
re-logon or restart the machine.

0x80100013 -2146435053 Internal communication error

0x80100014 -2146435052 Unknown internal error

0x80100015 -2146435051 Invalid manufacturer information

0x80100016 -2146435050 User has tried to stop a process that it is not actual existing.

0x80100017 -2146435049 The selected card reader is not available right now.

0x80100018 -2146435048 Operation is stopped; the service programs could have quit.

0x80100019 -2146435047 The receiving buffer of PCl is too small

0x8010001A -2146435046 The driver of card reader does not support current card
reader.

0x8010001B -2146435045 The card reader driver cannot get the unique name, due to a
duplicated name.

0x8010001C -2146435044 Card is not supported by current card reader.

0x8010001D -2146435043 The smart card services do not start.

0x8010001E -2146435042 The smart card services are stopped.

0x8010001F -2146435041 An unexpected card error occurs.

0x80100020 -2146435040 Unable to get provider’s information of the smart card.

0x80100021 -2146435039 Unable to get manufacturer’s information of the smart card.

0x80100022 -2146435038 The user requested functions are not supported by current
smart card.

0x80100023 -2146435037 The selected directory does not exist.

92

ROCKEY6 SMART User Manual V1.3

0x80100024 -2146435036 The selected file does not exist.

0x80100025 -2146435035 The selected directory is invalid.

0x80100026 -2146435034 Selected file is invalid. No file has been selected now.

0x80100027 -2146435033 Access denied for current file

0x80100028 -2146435032 The space of card is full. No information could be written in.

0x80100029 -2146435031 Configuration file pointer error

0x8010002A -2146435030 PIN code error

0x8010002B -2146435029 An unidentified error code returned from the smart card
service.

0x8010002C -2146435028 Requested certificate does not exist

0x8010002D -2146435027 The request for getting the certificate is denied.

0x8010002E -2146435026 Cannot find any card reader

0x8010002F -2146435025 Data is lost during the process of the smart card
communication, please try again.

0x80100030 -2146435024 Requested key file does not exist

0x80100065 -2146434971 Card reader cannot communicate with card due to
configuration conflicts of manufacturer information

0x80100066 -2146434970 Card has no response for reset operation

0x80100067 -2146434969 Card is power off

0x80100068 -2146434968 The card is repositioned. The shared information is invalid.

0x80100069 -2146434967 The card is disconnected.

0x8010006A -2146434966 Access denied due to existing security settings.

0x8010006B -2146434965 PIN code is not verified, access denied.

0x8010006C -2146434964 The maximum numbers of PIN verifications are reached.
Access denied.

0x8010006D -2146434963 The last card file has been reached. There is no more files

93

ROCKEY6 SMART User Manual V1.3

could be visited.

0x8010006E -2146434962 Operation is stopped by the user.

0x8010006F -2146434961 The smart card PIN is not configured.
0xA0100001 -1609564159 The file already exists.

0xA0100002 -1609564158 Card internal storage operation error.
0xA0100003 -1609564157 The user provides an invalid CLA.

0xA0100004 -1609564156 The user provides an invalid INS.

0xA0100005 -1609564155 The virtual machine address is overflow/ normal
0xA0100006 -1609564154 Divide by zero error

0xA0100007 -1609564153 The card is not plugged into the correct position.
0xA0100008 -1609564152 The card is in unknown state.

0xA0100009 -1609564151 The card is not opened.

O0xA010000A -1609564150 Unknown command

0xA010000B -1609564149 The reset times of setting super password is “0”
0xA010000C -1609564148 Opened too many devices.

0xA010000D -1609564147 Invalid instruction error.

0xA01000FF -1609563905 The card still has data needing to be returned.

Virtual Device Error Codes

0xA0101001

-1609560063

Failed to create virtual card file

0xA0101002

-1609560062

Failed to open virtual card file

9.10 Authorization

Authorization types

Password is unverified

Reseller code is verified

94

ROCKEY6 SMART User Manual V1.3

2 Manufacturer code is verified
3 Remote update password is verified
4 Super password is verified

Required authority levels for various operations

GET_CARD_INFO 0,1,2,3,4
GET_HARDWARE_INFO 0,1,23,4
GET_MANAGER_CODE 0,1,2,3,4
GET_CARD_PRIVILEGE 0,1,2,3,4
GET_REMOTE_INFO 0,1,2,3,4
SET_REMOTE_INFO 0,1,2,3,4
CHECK_REMOTE_INFO 0,1,2,3,4
GET_CURRENT_DIR 0,1,2,3,4
SET_CURRENT_DIR 0,1,2,3,4
GET_CURRENT_FILE 0,1,2,3,4
SET_CURRENT_FILE 0,1,2,3,4
GET_PARENT_DIR 0,1,2,3,4
SET_PARENT_DIR 0,1,2,3,4

LIST_DIR 0, 4, (4 could list hidden executable files)
READ_FILE 0,1,2,3,4
WRITE_FILE 0, 1, 2, 3, 4(executable file, internal used only files

are required level 4)

FORMAT_CARD 1,2, 4
CREATE_DIR 0,1,2,3,4
CREATE_FILE 0, 1, 2, 3, 4(executable files, internal use only file

requires level 4)

95

ROCKEY6 SMART User Manual V1.3

REMOVE_DIR 0, 1, 2, 3, 4(required DIR is empty)
REMOVE_FILE 0, 1, 2, 3, 4(executable files, internal use only file
requires level 4)
RANDOM 0,1,23,4
RUN 0,1,2,3
CHECK_SUPER_PASS 0,1,2,3,4
SET_SUPER_PASS 4
GET_UPGRADE_REMOTE_PASS 4
CHECK_AGENT_PASS 0,1,23,4
CHECK_MANUFACTURER_PASS 0,1,2,3,4
SET_HARDWARE_INFO 2
SET_MANAGER_CODE 2
SET_AGENT_PASS 2
SET_MANUFACTURER_PASS 2
DESENC 0,1,23,4
DESDEC 0,1,23,4
RSAGENKEY 4
RSAENC 0,1,2,3,4
RSADEC 0,1,2,3,4
GETFREESPACE 0,1,23,4
SETCOUNTER 4
STEPCOUNTER 0,1,23,4

96

ROCKEY6 SMART User Manual V1.3

Chapter 10 APl Reference and Samples

10.1 API Reference

The API is a built-in interface that is used for the program communications between the
developer’s applications and the ROCKEY6 SMART dongle. It is provided to the developer by using a
corresponding develops language. For Microsoft Visual C++ developers, there are two methods to use
them: “static link” and “dynamic link”. When ‘static link” is used, you need to add the file “Dic32u.lib” and

“Dic32.h” into the project.

There are a total of 8 API interfaces in “Dic32u.DLL". The following table provides a description

(please also see Chapter9)

Table 10-1 API Description

ROCKEYSMART API Main Function Description

Interface

DIC_Find Find card reader devices connected to the PC
DIC_Open Open selected card reader

DIC_Close Close selected card reader

DIC_Command Dongle operation instruction function is the main function

for sending the instructions to the dongle

DIC_Get Get returned data sub function
DIC_Set Set inputted data sub function
DIC_GetVersion Get current version number of dynamic library

97

ROCKEY6 SMART User Manual V1.3

10.2 Sample01 Fundamental Framework

“DIC_Find”, “DIC_Open” and “DIC_Close” are the three basic API operations for find open and

close the dongle. DIC_Find returns the number of the smart card reader drivers installed. Please note

that even though there is no ROCKEY6 SMART dongle connected to the PC, the return value for

“DIC_Find” is NOT zero, for its driver is already installed. To identify whether a ROCKEY6 SMART is

plugged into the PC, “DIC_Open” needs to be run. The parameters of “DIC_Open” and “DIC_Close”

are the dongle handlers that are counted from 0. Once a dongle is unlocked, the root directory is

shown.

The following example is using the ‘static link” to connect “DLL". Its corresponding project

is<Samples\API32VC\VC6\Sample01>.

num = DIC_Find(); //Number of dongle
if (num <= 0)

{

printf("'No dongle found\n'™);

return;

he

printf(*'Open the Dongle\n');

for (i=0;i<num;i++)

{

hic = DIC Open(i, NULL);

// Do not have to know the name of the dongle,

// input NULL

98

ROCKEY6 SMART User Manual V1.3

if (hic >= 0)

break; // Stop searching once one dongle is found.
}

if (i == num)

{

printf(""No dongle with connected Dongle found\n');
return;

}
iT (errcode != SCARD_S_SUCCESS)

{

printf(""Error code: %08x\n', errcode);
return;

}

// ..

// Specific dongle operations

/7 ...

printf(*'Close the Dongle\n');

errcode = DIC_Close(hic);

if (errcode !'= SCARD_S SUCCESS)

{

printf(""Error code: %08x\n",errcode);

return;

}

99

ROCKEY6 SMART User Manual V1.3

10.3 Sample02 Traversing Dongles

If a PC has many USB ports or connects to a USB HUB, then more than one ROCKEY6 SMART
dongle could be present. More importantly, those dongles could be simultaneously used on the same
PC without any conflicts. The maximum numbers of concurrent dongles is 16. The software developer
must determine how to distinguish between multiple attached ROCKEY6 SMART dongles. We would
recommend the developer to use the dongle management ID information to do this, as this ID is always
unique for each customer account. (Unless the customer requests a different ID)

“DIC_Find” is used to find the number of card reader drivers on the system. A successful operation
of “DIC_Open” shows the existence of a dongle. A complete example project is in <

Samples\API32VC\VC6\Sample02>.

char reader_name[256]; //The name of the dongle
num = DIC _Find(Q);

printf("%d\n"", num); // Output should be “6”, ifdrivers installed properly.
it (num <= 0)

{

printf(""No dongle found\n');

return;

b

//Traverse begins

for (1=0;i1<num;i++)

{

printf(*"Open the Dongle: ');

hic = DIC Open(i, reader_name);

if (hic < 0)

{

100

ROCKEY6 SMART User Manual V1.3

if (hic == SCARD_W_REMOVED_CARD)
{

printf(*'No Dongle found\n');
continue;

}

printf(""Error code: %08x\n', hic);
return;

by

printf("%s\n", reader_name); // Output the name of the dongle
// ...

// Specific Dongle operations

/7 ...

printf("'"Close the Dongle %d\n", i);
errcode = DIC _Close(i);

iT (errcode != SCARD_S_SUCCESS)

{

printf(""Error code: %08x\n', errcode);
return;

by

}

10.4 Sample03 Dynamic Linked Mode

Loading “DLL” is an optional link mode that is unnecessary to use “lib” files. The complete example

project is in <Samples\API32VC\VC6\Sample03>.

101

ROCKEY6 SMART User Manual V1.3

// Define the useful functions

typedef int (WINAPI *fDIC _Find)();

typedef int (WINAPI *fDIC_Open)(int hic, char* reader_name);

typedef int (WINAPI *fDIC Close)(int hic);

typedef int (WINAPI *fDIC_Create) (char* filename, char* mfname, char* atr,
WORD atrlen);

typedef int (WINAPI *fDIC_GetVersion)(char* ver);

typedef int (WINAPI *fDIC_Command) (int hic, int cmd, void* cmddata);

typedef int (WINAPI *fDIC_Get) (void* xdata, int pl, int p2, char* buffer);

typedef int (WINAP1 *fDIC_Set) (void* xdata, int pl, int p2, int p3, char*
buffer);

// Function definition
HINSTANCE hDII = NULL;

// Dynamic library handle

fDIC_Find dDIC_Find;
fDIC_Open dDIC_Open;
TfDIC Close dDIC Close;
fDIC_Create dDIC_Create;

TfDIC_GetVersion dDIC_GetVersion;
fDIC_Command dDIC_Command;
fDIC_Get dDIC_Get;
fDIC_Set dDIC_Set;

void main()

{

int errcode, num, hic, 1;

// Load dynamic library

102

ROCKEY6 SMART User Manual V1.3

hDI1 = LoadLibrary(*'DIC32u.DLL");

if (hDIl == NULL) return;

dDIC_Find (fDIC_Find)GetProcAddress(hDIl, "DIC_Find™);

dDIC_Open (fDIC_Open)GetProcAddress(hDll, "DIC Open™);

dDIC_Close = (fDIC_Close)GetProcAddress(hDIl, "DIC_Close™);

dDIC Create = (fDIC_Create)GetProcAddress(hDIl, "DIC Create™);

dDIC_GetVersion = (FfDIC_GetVersion)GetProcAddress(hDII,
"DIC_GetVersion);

dDIC_Command = (fDIC_Command)GetProcAddress(hDll, "DIC_Command™);

dDIC_Get (fDIC_Get)GetProcAddress(hDIl, "DIC Get');

dDIC_Set (fDIC_Set)GetProcAddress(hDIl, "DIC_Set™);
printf(“searching the dongle: ");

num = dDIC_Find();

printf(*%d\n",num);

it (num <= 0)

{

printf(*'No dongle found\n™);

return;

}

printf(*'Open the dongle\n™);

for (i=0;i<num;i++)

{

hic = dDIC_Open(i, NULL);

// Don’t need to know the name of dongle, set NULL
it (hic >= 0) break;

// Stop the searching once one is found

}

103

ROCKEY6 SMART User Manual V1.3

it (i == num)

{

printf(*'"No dongle connected to Dongle found\n');
return;

}

// ...

// Specific dongle operations
// ...

printf(*"Close the dongle\n™);
errcode = dDIC_Close(hic);

// Unload dynamic library
FreeLibrary(hDIl);

}

10.5 Sample04 Get Manufacture and Volume Information

Software developers specify both volume and software developer information. Developers also

decide how to use such information. In general we recommend that developers write their company

information into the software developer information file. In doing so after a “DIC_Open” command, you

may get this information and use it to identify your dongle.

“DIC_Command” is the core API through which most of the functions works. It has three

parameters: dongle handle, the command to be executed, and data buffer related to said command.

The second parameter is already defined as a macro for ease of use.

For example, macro “GET_CARD_INFO” is used to read software developer and volume

information.

104

ROCKEY6 SMART User Manual V1.3

“DIC_Get” is an auxiliary API responsible for helping the user obtains information from the data

buffer. Its second parameter is also pre-defined as a macro. If the second parameter is “ATR", it refers

to software developer information. If the second parameter is “VOLUME”, it refers to volume

information. The third parameter defines the return mode of the data. “BY_VALUE" means the

information is returned as the return value of “DIC_Get". “BY_ARRAY” means the information returned

is stored in the buffer, and the return value of “DIC_Get” is the content length of the buffer. When using

“DIC_Get", if the macro is a piece of string information of ‘software developer information” or “volume”,

the data is always returned by “BY_ARRAY”, no matter how the returned mode is set. Then, the return

value of “DIC_Get” is the length of software developer or volume information in the buffer. Please refer

to < Samples\API32VC\VC6\Sample04>.

int i, num, hic, errcode;

char cmddata[256]; // command buffer

char buffer[256]; // user buffer

num = DIC _Find(Q);

for (i=0;i<num;i++)

{

hic = DIC_Open(i, NULL);

if (hic >= 0) break; // Stop searching once one is found
}

if (1 == num) return;

errcode = DIC_Command(hic, GET_CARD_INFO, cmddata);
DIC_Get(cmddata, ATR, BY_ARRAY, buffer);

// Transfer ATR from cmddata to buffer

printf(“software developer information: %s\n*, buffer);

DIC_Get(cmddata, VOLUME, BY_ARRAY, buffer);

105

ROCKEY6 SMART User Manual V1.3

// Transfer volume information from cmddata to buffer

printf("'"Main volume: %s\n", buffer);

errcode = DIC _Close(hic);

10.6 Sample05 Get Manufacture Time, Hardware Serial Number,

Shipping Time, and COS Version

Hardware information includes factory time, hardware serial number, ship time and COS version.
Such information is available to the macro of “GET_HARDWARE_INFO” in “DIC_Command”. And the
corresponding macros in “DIC_Get” can also get the information items: “FACTORY_TIME” (The time
that the dongle was produced by the manufacturer.), “HARD_SERIAL” (The hardware serial number is
a globally unique identifier), ‘SHIP_TIME” (The ship time may be related to the software developer

warranty), and “COS_VERSION” (COS version of the card).

The following example demonstrates another mode of the “DIC_Get” application. If the return
mode is “BY_VALUE", the last parameter can be set to “NULL". You may get the parameter from the

return value. Please refer to < Samples\API32VC\VC6\Sample05>.

int i, num, hic, errcode;

char cmddata[256]; // Command buffer

DWORD FactoryTime, HardSerial, ShipTime, COSVersion;
num = DIC_Find(Q);

for (1=0;i1<num;i++)

{

hic = DIC Open(i, NULL);

it (hic >= 0) break; //Stop searching once one is found

106

ROCKEY6 SMART User Manual V1.3

}

if (i == num) return;

errcode = DIC_Command(hic, GET_HARDWARE_ INFO, cmddata);

FactoryTime = DIC_Get(cmddata, FACTORY_ TIME, BY_VALUE, NULL);

HardSerial = DIC_Get(cmddata, HARD_SERIAL, BY_VALUE, NULL);

ShipTime = DIC_Get(cmddata, SHIP_TIME, BY_VALUE, NULL);

COSVersion = DIC_Get(cmddata, COS_VERSION, BY_VALUE, NULL);

printf(""Factory time %08X\n", FactoryTime);

printf(*'"Hardware serial number %08X\n', HardSerial);

printf(“ship time %08X\n', ShipTime);

printf(*"COS version %c%c.%c%hc\n’, COSVersion>>24, COSVersion>>16,
COSVersion>>8, COSVersion);

errcode = DIC _Close(hic);

10.7 Sample06 Get Zone Code, Reseller Code, User Code 1 &User
Code 2

The macro “GET_MANAGER_CODE” of DIC_Command may get the management code
information of the dongle. “ZONE”, “AGENT”, “USER1” and “USERZ2" of “DIC_Get” represent
respectively zone code (country code of dongle), agent code (sales agent code of the dongle), and user
code (software developers have their own unique codes). Please refer to < Samples\API32VC

\VC6\Sample06>.

int i, num, hic, errcode;
char cmddata[256]; // Command buffer
WORD Zone, Agent, Userl, User2;

num = DIC_Find();

107

ROCKEY6 SMART User Manual V1.3

for (i=0;i1<num;i++)

{

hic = DIC_Open(i, NULL);

if (hic >= 0) break; // Stop searching once one is found
}

if (i == num) return;

errcode = DIC_Command(hic, GET_MANAGER_CODE, cmddata);

Zone = DIC_Get(cmddata, ZONE, BY VALUE, NULL);

Agent = DIC_Get(cmddata, AGENT, BY_VALUE, NULL);

DIC_Get(cmddata, USER1, BY_VALUE, NULL);

Userl
User2 = DIC_Get(cmddata, USER2, BY_VALUE, NULL);
printf(*'Zone code %04x\n', Zone);

printf(*"Agent code %04x\n", Agent);

printf("'User code 1 %04x\n', Userl);
printf(*"User code 2 %04x\n*, User2);

errcode = DIC Close(hic);

10.8 Sample07 Random Number

Random number generation is very important for many encryption algorithms. ROCKEY6 SMART
performs random number generation in the hardware. First of all, the length of the random number has
to be set through “DIC_Set’(maximum length of 16 bytes, set with “RANDOM_SIZE” macro), and then
calls the command “RANDOM?” to get the random number. The random number is stored in “cmddata”.

Please refer to < Samples\API32VC\VC6\Sample07>.

108

ROCKEY6 SMART User Manual V1.3

int 1, num, hic, errcode;

char cmddata[256];

num = DIC _Find(Q);

for (i=0;i<num;i++)

{

hic = DIC Open(i, NULL);

if (hic >= 0) break; // Stop searching once one is found.

}

if (i == num) return;

DIC_Set(cmddata, RANDOM_SIZE, BY_VALUE, 16, NULL); // Set the random
number length

errcode = DIC_Command(hic, RANDOM, cmddata); // Get random number

for (i=0;i<16;i++) printf('%02X ", (BYTE)cmddata[i]);

printf(’'\n");

errcode = DIC_Close(hic);

10.9 Sample08 Super Password

The super password is for the developers and may never be shared with end users. Super

password verification is required for specific dongle operations.
The “CHECK_SUPER_PASS” in the “DIC_Command” are used for verifying the super password.

And the “GET_CARD_PRIVILEGE” macro will return the current privilege status of the dongle. Its

return value is one byte in length. Every bit of the byte represents a different privilege status.

109

ROCKEY6 SMART User Manual V1.3

We defined the following status of privilege.

Table 10-2 Privilege Status

Macro Privilege Status

DICPR_NOPASS Password not verified status
DICPR_SUPERPASS Super password verified status
DICPR_REMOTEPASS Remote update password verified status

The “SUPERPASS_STATUS” macro of “DIC_Get” shows if super password verification is
successful. The return value of 1 represents successful verification, and O indicates super password
verification failure. “REMOTEPASS_STATUS” macro detects whether the remote update password

verification is successful or not. Please refer to < Samples\API32VC\VC6\Sample08>.

//Get privilege information of the dongle

errcode = DIC_Command(hic, GET_CARD_PRIVILEGE, cmddata);
if (DIC_Get(cmddata, SUPERPASS STATUS, BY VALUE, NULL))
printf(*'super password is verified\n');

else printf('super password is invalid\n™);

//Super password is 8 FF
for (i=0;i<8;i1++) cmddata[i] = (char)OxFF;

errcode = DIC_Command(hic, CHECK SUPER_PASS, cmddata);

//Get privilege information of the dongle
errcode = DIC_Command(hic, GET_CARD_PRIVILEGE, cmddata);
if (DIC_Get(cmddata, SUPERPASS STATUS, BY_VALUE, NULL))

printf(“super password is verified\n');

else printf(“super password is invild\n™);

110

ROCKEY6 SMART User Manual V1.3

// Updating new super password

// Put new super password (0 1 2 345 6 7) into the buffer
// Parameter p3 of the DIC_Set has maximum (10 times) to try.
for (1=0;1<8;i1++) buffer[i] = (char)i;

DIC_Set(cmddata, SUPERPASS DATA, BY ARRAY, 10, buffer);

errcode = DIC_Command(hic, SET_SUPER_PASS, cmddata);

//Back to the normal user state

errcode = DIC Close(hic);

errcode DIC_Open(hic, NULL);
//Try the new super password
for (i=0;i<8;i1++) cmddata[i] = (char)i;

errcode = DIC_Command(hic, CHECK_SUPER_PASS, cmddata);

//Get privilege information of the dongle

errcode = DIC_Command(hic, GET_CARD_PRIVILEGE, cmddata);
if (DIC_Get(cmddata, SUPERPASS_ STATUS, BY_VALUE, NULL))
printf("'super password is verifies\n');

else printf(“'super password is invalid\n');

10.10 Sample09 Directories and Files

This section covers directory and file operations. The complete example is in < Samples\API32VC\

VC6\Sample09>.

111

ROCKEY6 SMART User Manual V1.3

Format File System
The macro “FORMAT_CARD” in “DIC_Command” is to format the file system on the condition that
the super password has been verified and the volume and software developer information has been

set.

char data[256];

// 1.Change privilege to super user (Format operation is only available
to super users)

for (1=0;1<8;i++) data[i] = (char)Oxff;

// By default, the super password is 8 FFs.

errcode = DIC _Command(hic, CHECK SUPER_PASS, data);

// 2_New volume and software developer information can and can only be set

// While formatting.

DIC_Set(data, VOLUME, BY_ARRAY, 0O, "DICSYSTEM™);

DIC_Set(data, ATR, BY_ARRAY, 0, "DIC Co.");

// 3.Format

errcode = DIC_Command(hic, FORMAT_CARD, data);

Directory Operations

“DIR_Set, DIR_Get” and “DIR_ID” of “DIC_CLASS” and “DIC_NAME” can set and read the
directory ID, class, and name respectively, while “FILE_NO” defines the file humber. “CREATE_DIR”
and “LIST_DIR” in “DIC_Command” creates and lists the directory respectively. The list directory
command enumerates all the directories until an error is returned indicating there are no more

directories or files under the current directory.

// Create a directory with 1D 0x1000, the long file name is “Dirl”

112

ROCKEY6 SMART User Manual V1.3

DIC_Set(data, FILL, 256, 0, NULL); // Clear

DIC_Set(data, DIR_ID, BY VALUE, 0x1000, NULL);

DIC_Set(data, DIR_CLASS, BY_VALUE, Oxff, NULL);

DIC_Set(data, DIR_NAME, BY_ARRAY, 0, "Dirl");

errcode = DIC_Command(hic, CREATE DIR, data);

//Listdirectory, listall files and directories under the current directory

//Note: list directory in the root directory. The first file is the root
file, and the 2nd one is

// the software developer information file

for (i=0;i1<255;i1++)

{

DIC_Set(data, FILE_NO, BY VALUE, I, NULL);

errcode = DIC_Command(hic, LIST DIR, data);

if (errcode !'= SCARD_S SUCCESS) break;

dirid = DIC_Get(data, DIR_ID, BY_VALUE, NULL);

DIC_Get(data, DIR_NAME, BY ARRAY, buffer);

printf("%04x %s\n', dirid, buffer);

by

// SET_CURRENT macro of DIC_Command enters the sub-directory.

// 1ts parameter is the ID of the sub-directory. SET PARRENT DIR is used
to return to the

// upper directory without using any parameters

// Entering the directory 0x1100

DIC_Set(data, DIR_ID, BY VALUE, 0x1100, NULL);

errcode = DIC_Command(hic, SET_CURRENT_DIR, data);

// Return to the upper directory, the value of the data is void

errcode = DIC_Command(hic, SET_PARENT DIR, data);

113

ROCKEY6 SMART User Manual V1.3

Data File Operations
The macro “CREAT_FILE” of “DIC_Command” creates files, “WRITE_DATA” writes data into a file,
‘sET_CURRENT_FILE” selects a file, “READ_FILE” reads the selected file, and “REMOVE_FILE”"

deletes file(s).

The parameter settings for the operation of writing to files are special for the “DIC_Set” application,

the convention is:

DIC_Set(data, WRITE_DATA, write _size, write offset, write _data);

The convention of the parameter settings of reading files for “DIC_Set” is:

DIC_Set(data, READ_DATA, read_size, read offset, NULL)

//Create file

DIC_Set(data, FILL, 256, 0, NULL); // Clear

DIC_Set(data, FILE_ID, BY VALUE, 0x0033, NULL); //File 1D

DIC_Set(data, FILE_CLASS, BY VALUE, Oxff, NULL); // File type

DIC_Set(data, FILE ATTRIBUTE, BY_VALUE, FILEATTR_NORMAL, NULL); //Data
Tile attribute is generally set as FILEATTR_NORMAL

DIC_Set(data, FILE SIZE, BY VALUE, 20, NULL); // File size

DIC_Set(data, FILE _NAME, BY_ARRAY, 0, "Filel™);

errcode = DIC _Command(hic, CREATE_FILE, data);

// Write 20-byte information to the file

// Note: The new File just created is automatically set to be the current
file,

// unnecessary to set it again.

DIC_Set(data, WRITE_DATA, 20, 0, "abcdefghijklImnopqgrst');

errcode = DIC_Command(hic, WRITE FILE, data);

// Select the just created file with 1D 0x0033

114

ROCKEY6 SMART User Manual V1.3

DIC_Set(data, FILE_ID, BY VALUE, 0x0033, NULL);
errcode = DIC_Command(hic, SET CURRENT FILE, data);
// Read the file and display its length and content
DIC_Set(data, READ DATA, 20, BY_VALUE] O, NULL);
errcode = DIC_Command(hic, READ FILE, data);

readsize = DIC_Get(data, READ DATA, BY VALUE, buffer);

//Delete the current file

errcode = DIC_Command(hic, REMOVE_FILE, data);

10.11 Samplel0 Remote Update

See also “Chapter 5 Remote Update Management” in <<User Manual>>; the complete example is

in< Samples\API32VC\VC6\Sample10>

10.12 Samplell Write and Execute Program

Users can develop their own programs inside the dongle. It is also one of the most important

security features of the dongle. Feitian have provided IDE for users to develop and store their own

programs inside the dongle.

We use the “Keil” development environment to develop internal programs of the dongle and then

convert compiled “*.bin” files into C array by using “Tools\Binary > C” of the ROCKEY6 SMART IDE,

115

ROCKEY6 SMART User Manual V1.3

and also insert it into the program, as well as burning the virtual card files produced by the Keil

debugger simulator into the real device.

Executable files of the dongle must be written under the dongle root directory and they can only be
accessed after super password verification. The complete example is in < Samples\API32VC

\WVC6\Samplell>.

10.13 Samplel2 Double-Precision Point Calculation

This example will introduce how to perform float point calculations inside the card, and return the
results to the external program. The complete example project locates in the < Samples

\API32VC\VC6\Samplel2>.

10.14 Samplel3 Secure File Transfer

Regarding ‘secure File Transfer”, please also see “section 5.2 Secure File Transfer” in <<User

Manual>> for details. The complete example project is in < Samples\API32VC\VC6\Samplel3>.

10.15 Samplel4 DES and 3DES Encryption and Decryption

The ROCKEY6 SMART dongle with model “HID” has the features of DES and 3DES encryption

and decryption. The steps for using them are as follows:

- Generating internal data files (super password is required)

116

ROCKEY6 SMART User Manual V1.3

- Writing DES or 3DES key (super password is required)

- The encryption and decryption procedures are all based on “file ID” and “key ID". That is, when
encryption occurs, all data length that is not length in 8 multiples will be automatically filled into
lengths in 8 multiples. Therefore, all encrypted data is length in 8 multiples. When decryption occurs,
the dongle would restore the original data by removing all filled in data.

Note:

v' The difference between DES key and 3DES key is their data length: the DES key length is 8 bytes.
In contrast, the 3DES key length is 16 bytes.
v' The data structure for writing in DES key and 3DES key is:
* The DES key length is 10 bytes — Key ID (1 byte) + key length (1byte, the value should be 8) +
key (8 bytes)

* The 3DES key length is 18 bytes -- Key ID (1byte) + key length (1byte, the value should be 16)
+ key (16 bytes)

For a complete example, please refer to < Samples\API32VC\VC6\Samplel4>. In this example,
there is only a DES key and a 3DES key. In most cases, developers can freely set their file size and the

keys accordingly.

10.16 Samplel5 RSA Encryption and Decryption

In the “HID” model ROCKEY6 SMART dongle, the procedures for using RSA functions is as

follows:
v' Generating RSA key pairs (super password is required)

v' Encrypting and decrypting data according to public key ID and private key ID.

Note:

117

ROCKEY6 SMART User Manual V1.3

v' The key length is calculated in bits. Currently, it can support the key length of 1024 bits and 512
bits.

v The default value of “e” is 65537, and it is not modifiable.

v' When data is encrypted, to prevent encrypting data bigger than “n”, please set the most significant

bit for plain text to zero.

The complete example is in < Samples\API32VC\VC6\Samplel5>.

10.17 Samplel6 Counter Usage

Counter is a method that results in limiting the use times of the software by a developer. Once a
counter is setup, the developer can control and define the use times decreasing progressively. The

procedure is as follows:
- Setting up the counter (super password is required)

- The counter is decreased every time that the developer defined software procedure is performed.

If a developer sets the counter to zero, then it means the software can be used without times

limitation. The default state for a formatted dongle is use without times limitation.

If the counter is deducted to “1”, then the dongle cannot be used any more. It has to be sent back
and reset by the developer. Usually, a developer would use the following processes to reset a dongle
counter:

v After successfully verifying the super password, reset the counter to zero or any other numbers
rather than “1”.

v' Formatting dongle, the counter would be automatically set to zero. However, this method is not

118

ROCKEY6 SMART User Manual V1.3

normally used.

The complete example project is in < Samples\API32VC\VC6\Samplel6>.

10.18 Samplel7 Reading the Remaining Space

In order to manage the dongle memory space well, ROCKEY6 SMART provides the developer an
interface to check the dongle remaining space. The complete example is in: < Samples\API32VC

\VC6\Samplel7>.

10.19 Samplel8 Unlock the Dongle According To the Manufacture
ID

The developer may have many different dongles from different manufactures therefore they need
to manage their own dongle from the management code. ROCKEY6 SMART provides an API
“DIC_FindByMgrCode”. Developers may use this function to replace “DIC_Find” and also find the
dongle with the same management code by using this function. This function increased a management
code parameter compared to “DIC_Find” which is used by developers for inputting their own
management code. Developers may fill the structure “DICST_ManagerCode” and send into

“DIC_FindByMgrCode”, as well as they can define a buffer as follows:

Unsigned Char mgnCode[]={0x56,0x00,0x02,0x00,0xee,0xff,0xee,0xff};//Make sure the order of

the bytes, the management code here is 0056 0002 FFEE FFEE.

The complete example is in: < Samples\API32VC\VC6\Samplel8>.

119

ROCKEY6 SMART User Manual V1.3

PART 3 Advanced Section

This part introduces RSA and DES encryption and decryption as well as APDU and COS system
invoked usage. After over viewing this section the user will use ROCKEY6 SMART to improve program

security level and also perform some flexible management.

Chapter11, System Call Function Usage
ROCKEY6 SMART provides a set of system call functions. The user can use them when they are
compiling an external program, (executed in the smart card) such as file operation, fetching system

information, and float point function etc.

Chapter12, Advanced Application of the File System
This chapter introduces the file filter and APDU command and its applications. Filter file is a special
executable file that can filter some information. This chapter will describe how to create a filter file to

reach maximum-security control.
Chapter13 COS System Call Reference

In the process of compiling the smart card program, the dongle default functions are used. Those

functions are performed by system calls.

120

ROCKEY6 SMART User Manual V1.3

Chapter 11 System Call Function Usage

ROCKEY6 SMART provides five parts of the system call. (1) System function - such as
input/output and COS security mechanism, etc., (2) File operation - such as open file, read file and
write file. This part is fundamental to accessing the COS file system from external programming, (3)
Float-precision calculation - such as some simple calculations; plus, minus, multiplication, division and
some complicated extensive float-precision calculation, (4) Encryption and decryption - ROCKEY6
SMART provides three main encryption and decryption algorithms: RSA, DES, TDES and other
algorithms can be extended by self-defined algorithms (5) Utility of system call - such as random
number, request remote update marks. Some external applications can invoke the FEITIAN COS
system service to extend their functions. For more detail, please refer to << Chapter 13 COS System

Call Reference >>

Constitution of COS (Card Operating System) has been already introduced in this handbook. The

following are problems that may appear in the development process:

Data file has an “internal use” attribute. It means this kind of file only can be operated in the dongle.
System function provides six functions to perform the file operation. The file without marked “internal
use” also can be accessed by an executable file. Please Note: The executable file can access the data
file only when the file category of an executable file and a data file are in the same situation, and the

security level of the executable file must be greater or equal to the data file.

If user performed some other manipulations after selecting data the selection will fail. They have to

re-choose next time in such case.

121

ROCKEY6 SMART User Manual V1.3

11.1 Memory management

When using KEIL to program ROCKEY6 SMART, because the ROCKEY6 SMART memory is
pre-defined, users do not need to allocate the memory by themselves. Primarily, “data“, “idata”“, and
“xdata“are memories available to the user. "data", internal data area with direct addressing, is 128
bytes and has the fast speed to access variables; "idata", internal data area with indirect addressing, is
256 bytes and has ability to access all of the internal address spaces; "xdata" is the external data area

with 64k bytes. In such manner, the big buffer should be defined in “xdata“ area as following:

unsigned char xdata buf[300];

As default, datum is stored in the data area therefore users can use the “xdata“area to share the
datum. To transmit datum from one program to another you can use two methods, one is using “syscall”,
and the other is using the following method which is more convenient:

Code 1:

void main(void)

{

unsigned char xdata *p=0;
memset(p,1,128);
set_response(128,p);

exit(Q);

Code 2:

void main(void)

{

unsigned char xdata *p=0;

122

ROCKEY6 SMART User Manual V1.3

set_response(128,p);
exit(Q;

}

The only difference between the two programs is code 2 has not performed a rewrite to buffer “p“.
Running code 2 generates 128 random numbers.(The numbers have not initialized in memory but are
not from the random function) however code 1 generates 128 number “1”.This is the basic principle of

the sharing memory.

11.2 Fundamental Framework

“Input”, “output” and “exit” in ROCKEY6 SMART program is defined as:

byte get input(IN byte* pd, IN byte offset , IN byte mode, IN byte number)
byte set _response(IN byte len, OUT byte *pd)

exit()

Please Note:

In get_input function, mode represents type of input. For example, Replacing “get_input
(&x1,0,1,1);” to “get_input(&x1,0,0,2);” all represent inputting 2 bytes however the results are different.
The reason is that the order of bytes in the C51 program and the computer are opposite. If input “word

(dword)” into the program therefore mode should be assigned to “1(2)".

C51 example fac.c

#include ''sys_api.h"

// Factorial Function

123

ROCKEY6 SMART User Manual V1.3

int funl(int a,int b,int *ab)

{

int al,bl;
al=a*a;
bl=b*b;
*ab=al+bl;

}

// Main function

void main()

{
int x1,x2,x12;
//Get the first input variable
get_input(&x1,0,1,1);
//CGet the second variable
get_input(&x2,2,1,1);
//Results
funl(x1,x2,8&x12);
//0utput
set_response(2,&x12);
//Quit program

exit();

The above example demonstrates the fundamental method to develop ROCKEY6 SMART by
using Keil. Function “get_input“obtains data after calculation and uses function “set_response“to send

data back. Eventually, invoke function exit to quit.

124

ROCKEY6 SMART User Manual V1.3

11.3 File operation

There are five kinds of file operations in the ROCKEY6 SMART system call. They are shown in the

following table 11-1.

Table 11-1 File Operation system function

System function Description
creat_file() Create a file or directory
delete_file() Delete the current file
open_file() Open a file/directory or return to

the up folder

write_file() Write data into the file
read_file() Read a file
get_file_infor() Get a file information

The definitions are as following:

byte creat_file(IN word wFileID, IN byte pbFileName, IN byte bAttrib, IN word wSize);

byte delete file()

byte open_file(IN byte *pd, IN byte open_mode)

byte write file(IN word offset, IN byte *pd, IN word lenth)
byte read_file(IN word offset, OUT byte *pd, IN word lenth)
byte get file infor(OUT byte *pd, IN byte mode)

Note:
The “create_file" function is used for creating a file. When the file does exist you cannot create
another. If creating a data file and it is a current file, users do not need to use the “open_file“function.

v' “Open_file* function is used for setting the current file to read, write and delete later.

125

ROCKEY6 SMART User Manual V1.3

v' “Write_file" function is used for writing file by offset, data and length. If the offset and the length are
greater than the length of the file then the length will increase automatically, however the input of the
offset should be less than the length of the file.

v' The “Read_file" function is similar to the “write_file* function, however if the offset and the length
are greater than the file length, only the valid part of the input file can be read into the buffer. If users
want to know the actual length of the input, they can use the “get_file_info" function to calculate the
size (Actual input size equals File length minus offset) and it will also fail when the offset is greater

than the file length.

C51 example “file.c”, a complete file operation program:

#include ''sys _api.h"

#include <string.h>

void main(void)
{
byte xdata 1is;
word xdata FilelD;
byte xdata result[50];
byte xdata info[110];
word id;
1d=0x3f0a;
//1nput 102 bytes ,the First 2 bytes are the file ID, the rest are the content
get_input(info,0, 0,102);
//Get file ID
memcpy(&filelD, info, 2);
//0pen a directory by using ID
is = open_file(&id, 0);

126

ROCKEY6 SMART User Manual V1.3

// 1T the directory does not exist
if(is!=0)
{
//Create a new directory
creat_file(id, "myfile",0x20,0xaa);
open_File(&id,0);
}
//0pen the file
is= open_FTile(&filelD, 0);
//1f the file does not exist
if(is!=0)
{
//Create a fTile
creat _file(filelD, "efFile", 0x00,0x64);

}
//Input the data into the dongle 0 is the file beginning ,100 is the Ffile

length

write_file(0, info+2,100);
//Read 20 bytes from the offset being at 80 byte
read_file(80, result,20);
//Delete this fTile
delete_file();
//Return to upper folder
open_Tile(NULL,2);
//Return the results
set_response(20, result);

//Quit

127

ROCKEY6 SMART User Manual V1.3

exit();

In the above example, Use the “open_file* function to open a folder. If the return is non-zero, it
means you cannot open it, and no such sub-folder exists in the current directory. If this happens then
use the “create_file* function to create the folder. After creating this successfully, use the
“open_file" function to set the folder as current. By similar operation, use the “open_file* function to

open a file, if this fails then use the “create_file* function to create a new file, after that is current.

11.4 Invoke Executable Programs

The ROCKEY6 SMART “sys_recall” function is used for invoking an executable file from another.

The definition is as follows:

byte sys recall(IN byte value, IN byte *pd, IN word lenth, IN byte *pdnext);

The first parameter is an additional procedure when exiting the program. The second parameter is
the file ID which needs to run and is different to the external executable file. This is the executable file
ID rather than the file name. The last two parameters respectively are the length of input for the running
program and the file content. After having invoked and then entering the second program, the first

program quits and transmits the privilege to the next.

The following code “syscall.c” is an example of one external program calling another one to show

how to use the “sys_recall()” function.

When compiling the file “test.c”, rename the executable file as “F2F4” (or any other names, as long

128

ROCKEY6 SMART User Manual V1.3

as the calling name is changed accordingly). The program will pass the data of 0-199 to the next

program for use.

#include “sys_api.h”

#include <string.h>

void main(void)
{
byte xdata 1, y[200];
//the invoked file ID
byte filelD[2];
get_input(filelD, 0, 0, 2);
for(i=0;1i<200;i=i+1)
{
yli]=1;

//1nvoke external program
sys_recall(5, filelD, 200, y);
// quit the current program and enter to ‘“test.c”
set_response(200,y);
exit();

}

test.c program:

void main(void)
{

int i;

129

ROCKEY6 SMART User Manual V1.3

byte xdata info[200];

get _input(info, 0, 0, 200); // Get the passed data 0-199 from the previous
program

for(i=0;1<200;i++)

{

info[i]+=1;

}

set_response(200,info); // Output data is 1-200

exit(Q);

}

11.5 System Information and Security Mechanism

ROCKEY6 SMART provides the COS system functions and the relative functions of the security
mechanism. These functions are rather simple to use. Their return information is more than their inputs.
Therefore, it is necessary to set some variables for reading this information before calling them. There

are no restrictions for the types of variables. The following is the definitions:

byte get _hard_infor(byte *pd);
byte get sys infor(byte *pd);
byte set_class(byte value);

byte get class(byte * pd);

byte get_status(byte *pd);

- “get_hard_infor" is used for obtaining hardware information, such as the manufacture time and the

serial number.

- “get_sys_infor* is used for obtaining system information, hardware version, user code.

130

ROCKEY6 SMART User Manual V1.3

- “set_class" & “get_class" are used for setting and getting current security information.

- “get_status” is used for getting external password verification status.

“version.c” shows how to get hardware information and system information:

/* version.c */
#include “sys api.h*
void main(void)
{
byte xdata back[200];
//manufacture time (4bytes) serial number (4bytes)
get_sys infor(back); //len:8
//hardware version(4 bytes) COS version (4 bytes)
//Region code (2 bytes)
//Agent code (2 bytes) user codel(2 bytes) user
//code2(2 bytes)
get hard_infor(back+8); //len:16
set_response(24, back);
exit();

}

“read_info.c” shows how to set and get current security information and external password

verification status:

/* read _info.c */

#include “sys api.h*

void main(void)

131

ROCKEY6 SMART User Manual V1.3

{

byte class;

//Tile classification ,current external verification status
byte security,security?2;

//system security level
byte result;

//return value, O represents successful

byte xdata info[128];

result=0;
get_class(info);
class=info[0];
iT(class!=0xFF) //1f the program classification is not OxFF
{
result=1;

goto end;

security=0x06;
set_class(security);
get_class(info);
security2=info[1];
iT(securityl=security?)
{

result=2;

goto end;

132

ROCKEY6 SMART User Manual V1.3

get_status(&class);
if(class!=0)
{

result=3;

end:
set_response(l, &result);
exit(Q);

}

11.6 RSA Encryption and Decryption

The ROCKEY6 SMART supports internal RSA system calls. The difference between supporting
internal RSA and external APl invoked are (1) offering internal C51 directly invoked and (2) creating a

correct encryption key without super password verification.

byte rsa_gen_key (word pubKey, word KeylLen, word PriKey)
byte rsa _enc(IN word filelD, IN word length, IN OUT void *data)

byte rsa _dec(IN word filelD, IN word length, IN OUT void *data)

- ‘“rsa_gen_key" can be used to generate encryption keys. As default, the private key generated by
“rsa_gen_key" cannot be read by any manipulation and can be created in any size internal file within
the private key which is named as the same as the original one, that means this file will be replaced

by the encryption key. It can be read by an internal program.

- “rsa_enc" is used for encrypting public key.

133

ROCKEY6 SMART User Manual V1.3

“rsa_dec" is used for encrypting private key.

Actually, they are pair of reciprocal algorithms.

Program “rsa.c” demonstrates how to invoke RSA system call.

#include “sys_api.h"

#include “string.h"

void main()
{
int rPubFilelD=0x1002; //Rsa public key ID
int rPriFilelD=0x1004; //Rsa private key ID
word rKeylLength=1024; //Rsa key length
unsigned char xdata tData[128]; //data to encrypt
unsigned char xdata outData[256]; //output data
int ret;
//0btain data
get_input(tData,0,0,128);
//Generate key
ret=rsa_gen_key(rPubFilelD, rKeyLength,rPriFilelD);
if(ret!=0)
goto END;
memcpy(outData,tData,128);
//RSA encryption
ret=rsa_enc(rPubFilelD,128,tData);
if(ret!=0)
goto END;

memcpy(outData,tData,128);

134

ROCKEY6 SMART User Manual V1.3

set_response(254,outData);
exit(Q);

END:

set_response(2,&ret);
exit();

}

11.7 DES Encryption and Decryption

The ROCKEY6 SMART C51 system provides DES and 3DES encryption algorithms which are:

byte des _enc(IN word filelD,IN byte keylD, IN word length, IN OUT void
*data);

//DES encryption function

byte des_dec(IN word FfilelD,IN byte keylID ,IN word length, IN OUT void
*data) ;

//DES decryption function

byte tdes enc(IN word filelD,IN byte keylD, IN word length, IN OUT void
*data);

//3DES encryption function

byte tdes_dec(IN word filelD,IN byte keylD, IN word length, IN OUT void

*data) ;

//3DES decryption function

— Parameter filelD is the key file ID; keyID is the key ID; length is encryption/decryption, length here
is 8 integral multiples, data is the buffer to store the input and output data. The buffer will be covered

after the function is performed

135

ROCKEY6 SMART User Manual V1.3

- DES and 3DES algorithms are the same as in API. The following codes demonstrate how DES &
3DES work.

DES:

#include “sys_api.h"

#include <string.h>

void main()

{

unsigned char key[10]={1,8,1,2,3,4,5,6,7,8};
// default key

unsigned char xdata dData[129];
//data to encrypt

int i;

int ret;

byte Enc;
creat_file(0x1122,0,0,10);
//create key
write_file(0,key,10);

//write key

//obtain parameters
get_input(&Enc,0,0,1);
get_input(key+2,1,0,8);
get_input(dData,9,0,128);

iTF(Enc==0)
//encryption and decryption
dData[128]=des_enc(0x1122,01,128,dData);

//use key 1122 keylID is 01

136

ROCKEY6 SMART User Manual V1.3

else
dData[128]=des_dec(0x1122,01,128,dData);
set_response(129,dData);

exit(Q);

}

3DES:

#include “sys_api.h"

#include <string.h>

void main()

{

unsigned char key[18]={1,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
//default key

unsigned char xdata dData[128]; //data to encrypt
byte Enc;

creat_file(0x1122,0,0,18); //create key

write file(O0,key,18);//write key

//obtain parameters

get input(&Enc,0,0,1);

get_input(key+2,1,0,16);

get input(dData,17,0,128);

iTf(Enc==0) //encryption and decryption
dData[128]=tdes_enc(0x1122,01,128,dData);
//use key 1122 keylID i1s 01

else

dData[128]=tdes_dec(0x1122,01,128,dData);

137

ROCKEY6 SMART User Manual V1.3

set_response(129,dData);
exit(Q);

}

11.8 Obtain Random Number

Random number can be used in many programs. ROCKEY6 SMART provides a random generator
which can generate random numbers, at most 16 bytes. The following example demonstrates the

generator. If the size is greater than 16 bytes, the program only returns the first 16 bytes.

#include “sys api.h*

void main(void)

{

byte address|[16];

byte xdata len;

get input(&len,0,0,1);

//generates random numbers according to the length
get rand(address, len);

set_response(len,address);

exit();

}

138

ROCKEY6 SMART User Manual V1.3

11.9 Float Function Libraries Usage

There are basic float and complicated external float libraries in the ROCKEY6 SMART system call.
They are all in double precision. The ROCKEY6 SMART uses the math coprocessor to complete the
operation, the performance is better than the C51 internal float processor; therefore we recommend

users only use double precision.
Note:
The definition of double precision should be as byte “a[8] “ because Keil does not support double

precision. Double and float type are the same, all 4 bytes.

Program “double.c” demonstrates how to use the basic float library.

#include “sys _api.h"

#include <string.h>

void main()

{

unsigned char al[8]={0xA8,0x57,0xCA,0x32,0xC4,0x71,0x24,0x40};
//10.2222

unsigned char b1[8]={0xF7,0x06,0x5F,0x98,0x4C,0x55,0x15,0x40};
//5_.3333

unsigned char result[72];

memset(result,0,72);

double_add(al,bl,result);// plus

double _sub(al,bl,result+8);// minus
double_mul(al,bl,result+16); // multiply

double div(al,bl,result+24); //division

double_compare(al,bl,result+32);//compare

139

ROCKEY6 SMART User Manual V1.3

double_abs(al, result+40);//absolute value
double_sin(al,result+48); //sine
double_cos(al,result+56); //cosine
double_sgrt(al,result+64); //square
set_response(72,result);

exit(Q;

}

Program “extdouble.c” demonstrates how to use the external float library.

#include “sys_api.h"

#include “string.h"

void main()

{

unsigned char a[8],b[8]; //define an array

unsigned char xdata uRet[105];

memset(uRet,0,sizeof(uRet)); //get parameters

get _input(a,0,0,8);

get_input(b,8,0,8); //float calculaiton

double_asin(a,uRet); //arc-sine

double_acos(a,uRet+8); //arc-cosine

double_atan(a,uRet+16); //arc-tangent

double_sinh(a,uRet+24); //double sine

double cosh(a,uRet+32); //double cosine

double_tanh(a,uRet+40); //double tangent

double _ceil(a,uRet+48); //Minimum integer number greater than double
double_floor(a,uRet+56); // Maximum integer number less than double

double_exp(a,uRet+64); // double square

140

ROCKEY6 SMART User Manual V1.3

double_log(a,uRet+72); //logarithm
double_logl0(a,uRet+80);
double_mod(b,a,uRet+88); //mode

//results
set_response(104,uRet);
exit(Q);

}

11.10 Release Management

ROCKEY6 SMART provides software version management functionality in the C51 internal
system call, thus logical control is executed within the dongle with high security. We can combine the

internal program with these system calls.

ROCKEY6 SMART provides timer, counter and obtaining remote mark system call. They are

defined as:

byte start_timer ()

byte get timer (OUT dword * timer)
byte set _counter(byte counter)
byte step counter()

byte get_counter(byte* counter)

byte get_remote_tag (OUT dword *Tag)

Program can trigger timer by start_timer. get_timer can be used for getting the interval which unit is

141

ROCKEY6 SMART User Manual V1.3

10MS.

Example “timer.c” demonstrates how to use timer.

#include “sys_api.-h"

void main()

{

//input data for the loop

unsigned Int iTimer;

unsigned long i;

unsigned long dTimer; //return run time

get_input(&iTimer,0,1,1);

//start timer

start_timer();

for(i=0;1<iTimer;i++)

{

//get run time

get_timer(&dTimer);

//return
set_response(4,&dTimer);
exit();

}

142

ROCKEY6 SMART User Manual V1.3

In the program, users can use “set_counter” to set a number. Every time it is invoked it performs

“step_counter“. The dongle will be locked when the count equals zero.

Example ‘step_counter.c” demonstrates how to use the counter:

#include “sys api.h"
#include <string.h>
void main(void)

{

word counter;

unsigned long count=0;
//set number to 5
set_counter(5);

//get times of the loop
get _input(&counter, 0, 1, 1);
for(i=0;i<counter;i++)
{

//decrease counter
step_counter();

b

//get counter
get_counter(&count);
//return counter
set_response(4,&count) ;
exit(Q);

}

143

ROCKEY6 SMART User Manual V1.3

In the program, users can use “get_remote_tag“ to get a remote update mark and then the internal

code can control the program logic by the mark. Different marks match the corresponding codes.

Example “Remote.c” demonstrates how to get a remote update mark

#include “sys_api.-h"

void main()

{

dword dwTag;

//get remote update mark
get_remote_tag(&dwTag);
//do some logical control here
//. ..

//output remote update mark
set_response(4,&dwTag) ;
exit();

}

144

ROCKEY6 SMART User Manual V1.3

Chapter 12 Advanced File System Application

12.1 Filter File

Filter file is a special executable file. Its name uses the reserved values of 7816-4. Therefore, the

difference between the filter file and the ordinary executable file can be recognized by their names.

Just as the name indicates, filter file refers to a file with filtering functionality. It can filter some
specific information. In this case, the filtered information is information that the PC sends to the

ROCKEY6 SMART. It is also called “APDU".

Filter file has the following special features:
v If super password verification occurs before the operation, then all filter files are worthless.
v' The input buffer of the filter file can only start from 0. Namely, the first parameter of “input”

instruction is “0”.

12.2 APDU

APDU stands for “Applying Protocol for Data Unit". It is the fundamental data structure for
communication between the PC and IC card. Because ROCKEY6 SMART is a security product that is
based on the IC card, all layer communication between the PC and IC card are proceeded via data
switching. The API provided to developers is the interface of the APDU instruction package. If software

developers need to develop filter programs, then it is necessary to know when a read file command is

145

ROCKEY6 SMART User Manual V1.3

issued and what kind of data the IC card will receive. Here we will describe the APDU command

formats of the layer communication between ROCKEY6 SMART and the IC card.

APDU Structure
APDU can contain both command messages and response messages sent from the PC to the
card or vice versa. Both command messages and response messages can carry data, except for the

command message header.

APDU Command Message

APDU Command Messages are messages to the card from the computer. Their structure is:

CLA INS P1 P2 Lc Data field | Le

Figure 12-1 APDU Command Message Structure

These items are described as follows:

Table 12-1 APDU Implications of Command Message Items

Categories Item Description
Command CLA(1byte) Instruction code
Message INS(1byte) Instruction categories
Header P1(1byte) Instruction parameter 1 (interpreted by the specific
(Required) instruction)
P2(1byte) Instruction parameter 2 (interpreted by the specific
instruction)
Others Lc(1byte) The length of data field (the length of data field after the
“Lc” is variable)
Data field Data content

146

ROCKEY6 SMART User Manual V1.3

Le(1byte) Expected max length of data field in response message

(Itis also the expected return data length)

APDU Response Message

This is the message to the computer from the card. Its structure is:

Data field SWi1i SW2

Figure 12-2 APDU Response Message Structure

SW1 and SW2 are the command message tails that must be present. If an error occurs in the IC

card, the error code is returned through those two bytes.

Data field is actually the return data from the IC card to the PC. If the return data length is uncertain,
then a response message is sent to the PC about the return data length. After that, the data message

will be sent.

12.3 ROCKEY6 SMART APDU Command Set

The ROCKEY6 SMART APDU command message structures are introduced below. They are the
foundations for writing filter programs.

1. Create File

CLA = 0x00
INS = OxEO
P1 = O Create volume

= 1 Create directory or file

P2 = IT pl 1s O (create volume), It indicates ATR file length (max. 15);

147

ROCKEY6 SMART User Manual V1.3

not used otherwise.
LC = the length of data field

(assume these data is stored in a Buffer with BYTE type).

Descriptions of the data in data field:

(1) When P1 =0 (Create volume)

Buffer[0] - Buffer[15]: Volume name

Buffer[16] - Buffer[30]: ATR data

Note:

— The volume must have a name.

— The volume can only be created by the software developer. The end user is not authorized to

create it.

— When creating a volume, the COS will remove the remote update password and update tag.

(2) When P1 =1 (create directory or file)

Buffer[0] - Buffer[l1]: File ID number, one WORD, low byte precedence
Buffer[2]: File class

Buffer[3]: File attribute

Buffer[4] - Buffer[5]: File length, one WORD, low byte precedence
Buffer[6] - Buffer[22]: Optional long file name

Note:
- Long file name is optional, if it is not necessary, then clear Buffer[6] - Buffer[23].

- Super password verification is required to create an executable file.

148

ROCKEY6 SMART User Manual V1.3

2. Select File

CLA = 0x00

INS = OxA4

P1 = 0 (Search file by ID)
= 1 (Search file by name)

= 2 (Directly select the upper directory)

P2 = Not used
LC = length of data in data field

(Assume this data is stored in a buffer with BYTE type)

Description of data in data field:

(1) When P1 = 0 (Search files by their IDs)

Buffer[0] - Buffer[l1]: File ID number, one WORD, low byte precedence

(2) When P1 =1 (Search file by name)

Buffer[0] - Buffer[15]: File name

(3) When P1 =2 (Directly select the upper directory)

No data field

3. Binary Read

CLA = 0x00

INS = OxBO

P1 = shift high byte

P2

shift low byte

LC buffer length (byte number of data to be read in)

149

ROCKEY6 SMART User Manual V1.3

No data field, but there should be a buffer to store the data to be read.

Note:

Every time the length of data to be read should not exceed 250 bytes.

4. Binary Write

CLA = 0x00
INS = 0xDO
P1 = shift high byte

P2 = shift low byte

LC byte number of the file to be written

The data in data field is the content to be written into the file

Note:

The maximum data length that APDU can write is 128 bytes. For data of more than 128 bytes, the

data has to be broken into 128 bytes blocks.

5. Get Random Number

CLA = 0x00
INS = 0x84
P1 = Not used

P2 = Not used

LC = expected byte number of random number (currently 6 bytes max)

No data field.

6. Read Current Directory Record (list directory)

150

ROCKEY6 SMART User Manual V1.3

CLA = 0x00
INS = OxB2
P1 = record number (number of selected directory)

P2 = Not used

LC

Buffer length (must be 24 bytes)

There is a 22-byte buffer attached.
- Buffer[0] - Buffer[5]: for 6-byte file description input

- Buffer[6] - Buffer[21]: for 16-byte file name input (Clear in case of no file name)

7. Delete File

CLA = 0x00
INS = OxEE
P1 = 0 (delete current directory; 1, delete current file)

P2 = Not used

LC =0

Get Current Directory / File

CLA = 0x00

INS = Ox18

P1 = 0, get current directory;

IT 1, get current file; if 2, get the upper directory

P2 Not used

LC = Returned data byte number from dongle, must be 22

Returned data:

- Buffer[0] - Buffer[5]: for 6-byte file description input

151

ROCKEY6 SMART User Manual V1.3

- Buffer[6] - Buffer[21]: for 16-byte file name input (Clear in case of no file name)

12.4 Filter APDU

Filter File Naming

All the commands described in Section 12.3 can be used as filter file names. The 2-byte “CLA.INS”
can be converted to a 4-byte file name, where the 4 high bits and the 4 low bits of every byte are
converted into one byte respectively. Therefore, each byte of the file name to be discussed is a
hexadecimal numeral. Another difference between the filter file name and the common executable files

is that the filter file can use long file name. Its convention is:

v" CLA.INS. [C class ID/F file ID]
The dot in the middle is to distinguish each part of the file name and it has no affect. Iltems in the

square brackets are optional, that is, the long file name may contain either its file class or ID.

Take executable file 00BO as an example. When the system receives CLA.INS 00BO of the APDU

command, it calls executable file 00BO, which filters the read file operation.

O0OBOCFE implies that, when the system receives CLA.INS 00BO and the data file to be accessed

is of FE class, the executable file is called.

00BOF3002 indicates that, when the system receives CLA.INS 00B0 and the data file ID is 3002,

the executable file is called.
v' Multiple Filter Files

Before discussing multiple filter file applications, it is necessary to review the return function of the

executable programs. Normally, a program returns with exit. Its second parameter indicates whether

152

ROCKEY6 SMART User Manual V1.3

there is returned data. If the parameter is “0x61“, COS will return the data directly to the host computer
when the program exits. If it is* 0x90", no data is to be returned and the COS will not return any data to
the host computer.

If there are several filter files, when receiving an APDU, COS would execute the APDU in batch in

the following order: (XX is file category, yyyy is file ID)

Does executable file

“CLA.INS” exist?

Pass all APDU data to file “CLA.INS”

“CLA.INS” returns a

value?

Next Return

v

Figure 12-3 Execution Diagram of Multiple Filter Files

(2) Executes the APDU in the same way as (1), only names of the executable files are different.

The COS checks whether the executable file CLA.INS.CXX exists. If not, jump to the next step;

153

ROCKEY6 SMART User Manual V1.3

otherwise, transfer the APDU to the file, and check its return function parameter. Just in case there is
data to be returned to the host computer, execute the return operation, and if not, jump to the next step.
After the 3rd step, if the program does not exit, COS will execute the corresponding instruction

according to “CLA.INS".

The above are all the operations when COS receives an APDU. After the completion of every step,
it will transfer APDU to the next step. And in case that any error occurs in any of the chained programs
or there is data returned to the host computer, COS will terminate the program. When transferring data
to filter files, the COS places the entire APDU in the filter file input buffer (corresponding to the input
instructions of LC programs), instead of merely delivering the data to the filter file. This is different from

dealing with other executable files.

v Filter Read File Sample
In previous chapters, we mentioned that the COS interprets all information (APDU) to ROCKEY6
SMART from the host computer and then executes the interpreted commands. For example, API sends
to ROCKEY6 SMART a command for reading file in the following codes. Assume that the file with ID

0x0002 is a common data file.

DIC_Set(data, FILE_ID, BY_VALUE, 0x0002, NULL);

errcode = DIC_Command(0, SET_CURRENT _FILE, data);

// read the File and display the file length and content
DIC_Set(data, READ_DATA, 10, BY_VALUE|O, NULL);
errcode = DIC_Command(0, READ_FILE, data);

readsize = DIC_Get(data, READED_DATA, BY_VALUE, buffer);

Line 4 and 5 set two the input data before read file is executed: 10 is the data length to be read and

0 is the shift value. Referring to Section 4.3.3, you will find the host computer sends 3 APDU to

154

ROCKEY6 SMART User Manual V1.3

ROCKEY6 SMART: 0x00BO0, 0x0000, OxO0A, in total 5 bytes.

When receiving the APDU the COS first checks if executable file 0xO0BO exists. If it exists, the
APDU is transferred to executable file 0xO0BO as a string, and then the executable file runs. If the file
0x00BO0 does not exist, the COS will read the 10 bytes of data from the file 0x0002 and return it to the
host computer. If the executable file 0xO0BO does exist, it filters the command message of the APDU. It
is up to the programmer to define how to process the command message in the program, such as to
open a data file with ID 0x0020 and get 10 bytes of data starting from byte No.10 and then return. The
read data can be encrypted before it is returned to the host computer. The host computer in return

decrypts such data.

For example, in ROCKEY6 SMART, there is an executable file named 00BOF0002:

word 1;

word filelD;

byte xdata be[50];
TilelD=0x3300;
open_Ffile(&FilelD, 0);
read file(0, be, 20);
for(i=0; i1<20; i++)
{

be[1]+=1;

}

set_response(20, be);

exit(Q);

This filter file filters the reading operation to the data file with ID 0033. The COS transfers the 5

bytes of APDU to the filter file. Then the data file with ID 0002 is read with the same shift and access

155

ROCKEY6 SMART User Manual V1.3

byte number, and every byte accessed is added with 1, and then returned. Of course, it can make other
operations to the command message. If the filter file is available in ROCKEY6 SMART, we can view the
filtered output by double clicking the file with ID 0002 in IDE, which is different from the content in the
original file. After super password verification, all the filter files will be disabled; the display is the original

content of the data file.

v’ Filter List Directory
The APDU to read the current directory is 00B2. If it is necessary to prevent the unauthorized
person to view the contents of the dongle, you may filter the list directory to return an error code if the

list directory is attempted. The following code will return the error code 0x6982:

void main()

{

word sw = 0x6982;
set_response(2,&sw);

exit(Q);

Save the file in dongle under the name 00B2. Without the super password, opening a dongle wil
return an error message; it is a prompted internal error.

The name can be changed to 00B2FYYYY in order to protect a specific directory.

v Filter Select File
The APDU to select file is 00A4. It is necessary to select file(s) before to read/write/delete files.
Therefore, filtering file selection can perform the overall protection of files. In addition, filtering directory
file can protect all the files under the directory. If the conditions are not met, it is not possible to list

directories.

156

ROCKEY6 SMART User Manual V1.3

v' Filter Write File

It is not necessary to require super password verification for writing non-executable files. If there

are some important data files and certificates in the dongle and they are not internal files, you can have

the files write protected. For example, to protect data files with Class 0x32 or ID 0x7022 against any

unauthorized write and only you yourself can write properly. You may design in this way: filter the file

write command, the first 8 bytes of the data from the APDU are treated as the file password. First check

for the file password, if incorrect, file write is rejected; if correct, write the data after the 8-byte password

to the file. In this case, the maximum length of data to be written is 120 bytes. Following is the example

code:

void main()
{
byte xdata para[4l],length = 41,1;
word filelD;
byte key[8];

get_input(para,0,0,41);

// Default passwords

key[0]=0x30;

key[1]=0x31;

key[2]=0x32;

key[3]=0x33;

key[4]=0x34;

key[5]=0x35;

key[6]=0x36;

key[7]=0x37;

// Check i1f the password Is correct

for(i=0; 1<8; i++){

157

ROCKEY6 SMART User Manual V1.3

if(key[i]!'=para[i])

{

exit(); // Incorrect password, quit
}

}
filelD= 0x0005;

i= open_file(&filelD,0);

i F(i==0x05)

{
creat_file(filelD, NULL, 0, 0x2500);
open_file(&fFilelD, 0);

}

write_file(0x0000, para+8, 33);

exit(Q);

}

Naming the file as 00DOF0005 after compilation, this indicates to proceed filtering once writing to

file with ID 0x0005. It will avoid any unauthorized writing to this sensitive file.

158

ROCKEY6 SMART User Manual V1.3

Chapter 13 COS System Call Reference

The following is all the system call functions descriptions:

13.1 File Operations

File operations can operate the files and directories in the EEPROM.

create_file

Function Create file/directories
byte creat_file(IN word wFilelD, IN byte pbFileName, IN byte bAttrib,
Syntax
IN word wSize)
wFilelD File/Directory ID
pbFileName | File/directory name buffer area (file name is in 16
bytes maximum. If there is no file name, then the first
letter of the buffer should be clear to O or set to NULL
Parameter pointer), such as “aaa”.
bAttrib File/Directory attributes and security levels
wSize File length (counted in bytes, if it is directory,
parameter is O; low byte is at the left part, and high
byte is at right part.)
Return Return code, please see also CC

The file ID can be represented by a word type variable as the parameter; it is not necessary to be a

number. Please note the file / directory class is the same with that of the executable file. If a file is

159

ROCKEY6 SMART User Manual V1.3

created, it is selected by default upon completion, and it is ready for read, write, or delete operations. If

a directory is created, use “OpenFile()” to open the directory before entering it.

Following is the detailed description for each parameter.

ID: File / Directory ID

When creating file in the root directory, “0000” (system reserved), 2F01 (ATR file, including
manufacturer information), 3F00 (volume) and 3FFF (current directory) cannot be used. When creating

file or directory in any sub-directory, please do not use 3FFF, because this ID represents the current

directory.

v abbr: file / directory attributes and security levels

The high part of this type represents the file / directory attributes. Following is their description:

Attributes

Label

Description

Normal file

0x00

Not any special attributes

Executable

file

0x10

The file is executable, but it can only be created by the

main program, no other programs in the dongle.

Directory

0x20

Create a directory

Upignore

0x40

It only works for the executable files. If it can work, it means
the security levels of the executable file must be higher
than the system security levels. In other words, if the
security levels of the executable file is less than or equal to
the system security levels, then the executable file cannot

be executed.

Internal file

0x80

If it is a data file, then it represents that the data file can
only be accessed by the executable files in the dongle.
External operations can only delete it rather than read and
write after successful super password verification. Without

successful super password verification, it is impossible for

160

ROCKEY6 SMART User Manual V1.3

external programs to access the data file.

If it is executable file, then it means the executable file has
some hidden attributes. When all files are listed, if there is
no successful super password verification, all executable
files with the hidden attributes cannot be shown. It is an

important way to protect executable files.

The file security levels are represented via the low byte of the “abbr”. It contains 16 distinguished
authorization levels. The lowest level is 0, and the highest is 15.

COS has its own security levels.

delete_file

Function Delete opened file

Syntax byte delete_file()

Parameter | None

Return Return code, please refer to 13.10

The internal operations are not provided with the interfaces for deleting directories. It can only be

performed externally or used with the provided API.

open_file

Function Open file/directory or return to upper level

Syntax byte open_file (IN byte *pd, IN byte open_mode)

Parameter | pd The pointers for the file names or file IDs.

161

ROCKEY6 SMART User Manual V1.3

open_mode | Open method

00 Sort in file/directoy ID, (pointer is pointing to file/directory
ID, the lower byte is in the front).

01 Sort in file/directory name (at this time, the pointer is
pointed to file/directory names)

02 directly open the upper directory. At this time, “pd” is
NULL or other values; however, its value would be

neglected.

Return Return code, please refer to 13.10

If the directory names or IDs were being transferred, then they would enter the sub directory.

write_file

Function | Write data into the file

Syntax byte write_file(IN word offset, IN byte *pd, IN word length)

Parameter | offset The shifting positions for the file data to be written in.
pd Pointer buffer, the initial address for the source data.
lenth The number of total bytes to be written in.

Return Return code, please refer to 13.10

read_file

Function Reading file

Syntax byte read_file(IN word offset, OUT byte *pd, IN word length)

Parameter | offset The shifting positions of the file data to be read.
pd Pointer, points the address that stores the data.
lenth The number of the total bytes to be read.

Return Return code, please refer to 13.10

162

ROCKEY6 SMART User Manual V1.3

Note:
There is no “close file” operation to be displayed. Once the application program opens a new file,

or the application program finished its execution, the previous opened file will be closed automatically.

13.2 Security Mechanism

set_class

Function Changing the COS security state level.

Syntax byte set_class(IN byte value)

Parameter | value Assigned security state level. (It could be 0x00-0x0f or
Oxff. If the parameter is Oxff, the COS security level

would change to the same security state level with the

function “set_class”.)

Return Return code, please refer to 13.10

Note:
Because the security level is related to the file class, when the COS security level changes, current
system file class will change to the executable class accordingly. To execute it properly, the executable

file level must be higher than or equal to the security level of “set_class" function.

get_class

Function Get the current system security level

Syntax byte get class(OUT byte * pd)

Parameter | Pd address, points to the return value.

pd[0] The current system file class

Pd[1] The current system security level

163

ROCKEY6 SMART User Manual V1.3

Pd[2] Application program security level

Return Return code, please refer to 13.10
get_Status

Function Get system external verification state

Syntax byte get_status(IN byte *pd)

Parameter | Pd address, points to the return value

Return Return code, please refer to 13.10

There are three return values for the current system external verification
state:

0 Non-verified password state

4 Super password verification state

8 Remote update password verification state

13.3 System Services

exit
Function | Stop execution and return to the main program.
Syntax Exit()
Parameter | None
Return None

164

ROCKEY6 SMART User Manual V1.3

sys_recall

Function Execution of self-terminated and call another application program.

Syntax byte sys_recall(IN byte value, IN byte *pd, IN word length, IN byte *pdnext);

Parameter | value Additional operations for stopping the program:

* bit0 security level clear bit 0/1 — maintain/clear the
application security level settings.

* bitl RAM clear bit 0/1 — maintain/clear the VM RAM
(after the data passed back to the host machine).

* bit2 used to choose the next file 0/1 — using file
name/file ID to choose the next executable file.

The range of its values is 0-7.

pd Address, points to the ID of the program to be called.

length The length of the buffer (it will be passed to the next

application program)

pdnext The buffer starting address (it will be passed to the next

application program)

Return None

set_response

Return the response data to the caller, and using “get_response” function
Function
to get the response data.

Syntax byte set_response(IN byte len, OUT byte *pd);

Parameter | len The length of the return data
pd Address, points to the storage place for return data
Return None

165

ROCKEY6 SMART User Manual V1.3

get_input

Function Get the input parameter of the application program

Syntax byte get_input(IN byte* pd, IN byte offset, IN byte mode, IN byte number);

Parameter | pd Address, points to the data address
offset The shifting in every parameters
mode mode=0, BYTE type data,

mode=1, WORD type data,

mode=2, DWORD type data

number It represents the number of parameters with type
“MODE".
Return Return code, please refer to 13.10

Note:

When MODE set to 1 or 2, the bytes are shifted inside COS. If we want to find a file with
ID=0x0057, then we would input file ID to 0x0057. It will be shifted to the left-part right once using
“get_input (&ID, 0, 1, 1) . Inside the COS, we would then get the file with ID=0x0057. It will work

compatibly with the previous versions.

13.4 System Information

get_hard_infor

Function Get system hardware information

Syntax byte get_hard_infor(OUT byte *pd)

Parameter | Pd Address, points to the return value.

pd[0..3] Manufacture time

166

ROCKEY6 SMART User Manual V1.3

pd[4..7] Hardware serial number

pd[7..11] Shipping time

pd[11..15] | COS version

Return Return code, please refer to 13.10

get_sys_infor

Function Get system management information
Syntax byte get_sys_infor(OUT byte *pd)
Parameter | pd address, points to the return value.
pd[o, 1] Zone code

pd[2, 3] Reseller code

Pd4, 5] User code 1

pd[6, 7] User code2

Return Return code, please refer to 13.10

get_file_infor

Function Get relevant information of current directory or file
Syntax byte get_file_infor(OUT byte *pd, IN byte mode)
Parameter | pd Address, points to the return value
pd[0] Flle ID or directory ID
pd[1] File class or directory class
pd[2] File attributes and file security level or directory attributes

and directory security level.

Pd[3..4] File size or directory size

Pd[5..21] File name or directory name

167

ROCKEY6 SMART User Manual V1.3

mode There are three values for choosing the directories or
files:
0 get current directory

1 get current file

2 get upper directory

Return Return code, please refer to 13.10

Here, the directory refers to the directory for holding the current executing program; the file refers
to the files that are operated by the executing program. If the executing program does not operate any

files, then the return information with parameter equals one and would be meaningless.

13.5 Double Precision Float Calculation

add, sub, multi and div

Calculating adding, subtracting, multiplying and dividing for double precision

Function
float numbers.
byte double_add(IN byte *a, IN byte*b, OUT byte *result);
byte double_sub(IN byte*a, IN byte*b, OUT byte*result);
Syntax
byte double_mul(IN byte *a, IN byte*b, OUT byte *result);
byte double_div(IN byte*a, IN byte*b,OUT byte*result);
Parameter | a Address, points to the first floating point number. It is the

number to be added / subtracted / multiplied / divided.

b Address, points to the second floating point number.

result Address, points to a 8-byte buffer that is used for storing

the computation results.

168

ROCKEY6 SMART User Manual V1.3

Return Return code, please refer to 13.10

Once it is finished, the computation result would be stored in the default

memaory area.

sqrt

Function The floating point number square root calculation

Syntax byte double_sqgrt(IN byte *a, OUT byte *result);

Parameter | a Address, points to a floating point number

result Address, points to a 8-byte buffer that is used for storing

the computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result would be stored in the default

memaory area.

sin and cos

Function Calculating the value of sin and cos for float numbers.

byte double_sin(IN byte *a, OUT byte *result)

Syntax
byte double_cos(IN byte *a, OUT byte *result)
Parameter | A Address, points to a floating point number, the number is
a radian value.
result Address, points to an 8-byte buffer that is used for
storing the computation results.
Return Return code, please refer to 13.10

Once it is finished, the computation result will be stored in the default

memaory area.

169

ROCKEY6 SMART User Manual V1.3

double2int
_ Double precision float numbers converts to signed 32-byte integer, and will
Function
take the integer part directly.
Syntax byte double2int(IN byte *a, OUT byte *result);
Parameter | a Address, points to a floating point number.
result Address, points to a 4-byte buffer that is used for storing
the computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result would be stored in the default
memory area.
int2double
Function Signed 32-byte integer converts to double precision floating point number.
Syntax byte int2double(IN byte *a, OUT byte *result);
Parameter | a Address, points to a signed 32-byte integer.
result Address, points to an 8-byte buffer that is used for
storing the computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
abs
Function | Absolute value for float point numbers
Syntax byte double_abs(IN byte *a, OUT byte *result);
Parameter | a Address, points to a floating point number.

170

ROCKEY6 SMART User Manual V1.3

result

Address, points to an 8-byte buffer that is used for

storing the computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

compare

Function Comparing two float point numbers.

Syntax byte double_compare(IN byte *a, IN byte *b, OUT byte *result);

Parameter | a Address, points to the first float point number.
b Address, points to the second float point number.
result Address, points to a 1-byte buffer that is used for storing

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

There are three computation results: 0 (a ==b), 1 (a > b) and -1 (0xff) (a < b)

13.6 Float Point Library Expansion

asin
Function Calculating the value of asin
Syntax byte double_asin (IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.

171

ROCKEY6 SMART User Manual V1.3

result | Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code; please refer to 13.10.
Once it is finished, the computation result will be stored in the default
memory area.

acos

Function Calculating the value of acos

Syntax byte double_acos(IN byte *a, OUT byte *result)

Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

atan

Function Calculating the value of atan

Syntax byte double_atan(IN byte *a, OUT byte *result)

Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

172

ROCKEY6 SMART User Manual V1.3

sinh
Function Calculating the value of sinh.
Syntax byte double_sinh(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
cosh
Function Calculating the value of cosh.
Syntax byte double_cosh(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results..
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
tanh
Function Calculating the value of tanh
Syntax byte double_tanh(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.

173

ROCKEY6 SMART User Manual V1.3

result | Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
ceil
Function Calculating the minimum integer greater than double.
Syntax byte double_ceil(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
floor
Function | Calculating the maximum integer less than the double.
Syntax byte double_floor(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

174

ROCKEY6 SMART User Manual V1.3

exp
Function Calculating exp. function
Syntax byte double_exp(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
log
Function Calculating log function
Syntax byte double_log(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.
result | Address, points to an 8-byte buffer that is used for storing the
computation results.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
log10
Function Calculating the value of log10
Syntax byte double_log10(IN byte *a, OUT byte *result)
Parameter | a Address, points to a floating point number.

175

ROCKEY6 SMART User Manual V1.3

result

Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

fmod

Function Calculating the mod of two double precision floating-point numbers.

Syntax byte double_fmod(IN byte *a, double b, OUT byte *result)

Parameter | a Address, points to a floating point number.
b Address, points to two float numbers.
result | Address, points to an 8-byte buffer that is used for storing the

computation results.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

13.7 Encryption and Decryption Functions

des_enc
Function | des ECB encryption
byte des_enc(IN word filelD, IN byte keyID, IN word length, IN OUT void
Syntax
*data)
Parameter | filelD The ID of the file that is used for storing the key

176

ROCKEY6 SMART User Manual V1.3

keylD | Storing the key ID; it is prohibited to store more than 256 keys in a

data file.

length | The length of input data

data Data address, used to store input data and return data.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
des_dec
Function des ECB decryption
byte des_dec(IN word fileID, IN byte keylID, IN word length, IN OUT void
Syntax
*data)
Parameter | fileID The ID of the data file that is used for storing keys.
keylD | Storing the key ID; it is prohibited to store more than 256 keys in a
data file.
length | The length of input data
data data address, used to store input data and return data.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
tdes_enc
Function 3des ECB encryption
byte tdes_enc(IN word filelD, IN byte keyID, IN word length, IN OUT void
Syntax
*data)
Parameter | filelD The ID of the data file that is used for storing keys.

177

ROCKEY6 SMART User Manual V1.3

keylD | Storing the key ID; it is prohibited to store more than 256 keys in a

data file.

length | The length of input data

data data address, used to store input data and return data.

Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
tdes_dec
Function 3des ECB decryption
byte tdes_dec(IN word filelD, IN byte keyID, IN word length, IN OUT void
Syntax
*data)
Parameter | fileID The ID of the data file that is used for storing the keys
keylD | Storing the key ID; it is prohibited to store more than 256 keys in a
data file.
length | The length of input data
data data address, used to store input data and return data.
Return Return code, please refer to 13.10
Once it is finished, the computation result would be stored in the default
memory area.

rsa_gen_key

Function

Generating key pairs

Syntax

byte rsa_gen_key (word pubKey, word KeyLen, word PriKey)

Parameter

pubKey The public key file ID

Parameter

KeyLen The length of key space

178

ROCKEY6 SMART User Manual V1.3

Parameter | PriKey The private key file ID
Return Return code, please refer to 13.10
Once it is finished, the computation result would be stored in the default
memory area.
rsa_enc
Function RSA encryption, the value of e is 65537.
Syntax byte rsa_enc(IN word fileID, IN word length, IN OUT void *data)
Parameter | filelD The ID of RSA public key.
length | The length of input data
data data address, used to store input data and return data.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.
rsa_dec
Function RSA decryption, the value of e is 65537.
Syntax byte des_dec (IN word filelD, IN word length, IN OUT void *data)
Parameter | fileID The ID of RSA private key.
length | The length of input data
data data address, used to store input data and return data.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

179

ROCKEY6 SMART User Manual V1.3

13.8 Timer and Counter

get_timer
Function Get the execution time once the dongle is activated.
Syntax byte get_timer (OUT dword *timer)
Parameter | Return the address of the data; its unit is microsecond.
Return Return code, please refer to 13.10
Once it is finished, the computation result will be stored in the default
memory area.

start_timer

Function Starting timer

Syntax byte start_timer ()

Parameter | None

Return Return code, please refer to 13.10

step_counter()

Function Counter minus 1.

Syntax byte step_counter()

Parameter | None

Return Return code, please refer to 13.10

get_counter()

Function

Get the times of the counter

Syntax

byte get_counter(byte *counter)

180

ROCKEY6 SMART User Manual V1.3

Parameter | counter | address of the counter

Return Return code, please refer to 13.10

set_counter()

Function set the times of the counter.

Syntax byte step_counter()

Parameter | None

Return Return code, please refer to 13.10

13.9 Others

get_rand

Function Get random number

Syntax byte get_rand(byte *pd, byte len)

Parameter | Pd Buffer pointer, is used for storing returned random number.
len Assigned length of random number (counted in byte)
Return Return code, please refer to 13.10

Once it is finished, the computation result will be stored in the default

memory area.

The parameter can be a variable (either in “byte” type or in “word” type). Or it can simply use digits.

Note:
It can assign any values to memory [0], but only 16 bytes would be return by the system. Thus, if
more than al6-byte value is given, then the system can only return a random number in 16-bytes.

There is no error message prompting.

181

ROCKEY6 SMART User Manual V1.3

get_remote_tag

Function Getting remote update tag

Syntax byte get_remote_tag (OUT dword *Tag)
Parameter | Tag Remote update tag
Return Return code, please refer to 13.10

Once it is finished, the computation result will be stored in the default

memory area.

13.10 System Function Call Error Code

System call error codes

Return value Description

0 Application program is correctly terminated.
1 Invalid file

2 The file already exists.

3 Insufficient memory space

4 Security requirement is not sufficient
5 File is not found

6 Memory operation error

7 Data error

8 Invalid parameter

9 Virtual machine overflow

182

ROCKEY6 SMART User Manual V1.3

Appendix
Appendix A Glossary of Terms

Al. Main program

The main program is the part of the software running on the host computer. It has complete control

over software operation.

A2. Protected program

The protected program refers to the part of the program that only runs inside the dongle. A
program could run many of its sub programs inside the dongle. But only one protected program is
activated each time. A protected program is a function independent program. That means the protected

program has its own inputs and outputs corresponding to the encryption points in the main program.

A3. Protected execution

Protected execution always follows the protected compile. It would fetch the program in the virtual

card or real card.

183

ROCKEY6 SMART User Manual V1.3

A4. Executable file

Executable file refers to the binary code existing in the dongle after external program compiling. It

can be executed inside the card.

184

ROCKEY6 SMART User Manual V1.3

Appendix B TERMS

B1 The Common Errors in the C51 Program

(1) Please make sure the correct parameter type settings are used during the system call because

KEIL never checks the parameter types. For example:

void main()

{
short fileid ;

open_fTile(fileid,0); // incorrect
open_File(&fileid,0); // correct, keil does not report error in compiling

}

(2) The created file should be compatible with its previous version. Reversed creating file ID and

the file size (low byte is located at left and high byte is at right). Following is an example:

void main()

{

short filelD = O0x0a3f // The normal order is Ox3fOa.
char info[100];

get _input(info,100);

is = open_file(&filelD, 0);

if (is!=0)

{

creat_file(filelD, "efFile', 0x00,0x6400); //Create a normal data file
s

185

ROCKEY6 SMART User Manual V1.3

write_file(0, info,100); //Write File.

read file(80, result,20); //Read file, excursion is 80 and read 20 bytes.

}

(3) When using “get_input()” function and the data mod is 1 or 2 (choosing the data type in short or
int), the byte in the COS are reversed. Especially in selecting file ID case, the samplel3 program inputs

file ID=0x5700. This is actually the program accessing the ID=0x0057 file.

(4) Another problem is about the “DIC_Get()” function. In samplell, when the COS result is
0x0019, we get “c = DIC_Get (buffer, 1, BY _VALUE |1, NULL); //get “c” from the running result”.
Please pay attention to “DIC_Get” parameters. In most cases, the error is caused from the incorrect

byte sequence.

(5) Due to some bugs in the Keil compiler, when you try to compile “dword dNum=255*255" the

compiler will generate Oxfffffe01.

(6) String initialization problem. Cannot directly set value to a pointer, such as: “char *p='str”;

“should be replaced as “char p[]='str" “.

B2 ROCKEY6 SMART Developer’s Kit

The user will find the ROCKEY6 SMART Developer’s Kit in the ROCKEY6 SMART installation disc.

186

ROCKEY6 SMART User Manual V1.3

The following table contains the general information for the ROCKEY6 SMART Developer’s Kit

(“setup.exe” is omitted):

Index Description

API32 ROCKEY6 SMART Development Kits, applying to all Windows OS
API64 ROCKEY6 SMART Development Kits for 64-bit OS

Include ROCKEY6 SMART Header Files

Docs ROCKEY6 SMART User Manual

Driver for Win98 USB MASS STORAGE Driver for Win98

Linux ROCKEY6 SMART SDK for Linux

Samples ROCKEY6 SMART Samples for Types of Development Environments
Support Third-Party Development Tools, assisting customer in the

development of C51 projects

Tools ROCKEY6 SMART Common Tools

Double2Byte Tools for Introversion Between Binary and Floating Point Number

ErrorLookup Tools for Error Lookup

IDEI ROCKEY6 SMART Integrated Environment

RemoteUpdate | ROCKEY6 SMART Remote Update Tool

KeilWizard Rockey6Smart Keil Project Wizard

187

	Chapter 1 ROCKEY6 SMART Software Protection Solution
	1.1 ROCKEY6 SMART INTRODUCTION
	1.2 How to Protect Software with ROCKEY6 SMART
	1.3 How ROCKEY6 SMART Protected Software

	Chapter 2 ROCKEY6 SMART Installation and Remove
	2.1 Installation
	2.2 Removal
	2.3 Install and Remove Driver

	Chapter 3 Integrated Development Environments (IDE)
	3.1 IDE Introduction
	3.2 Write files into ROCKEY6 SMART

	Chapter 4 Card Operation System
	4.1 Module
	4.2 Data Files and Directories
	4.3 Executable File
	4.4 File Categories
	4.5 File Security Level
	4.6 File Attributes
	4.7 Security Mechanism

	Chapter 5 Remote Management
	5.1 Update Tag
	5.2 Update File
	5.3 Remote Module Manager
	Module Definition
	Module Authorization

	5.4 Instruction of Remote Update on Client-side
	Remote Tag Update
	Remote File Update
	Module Management
	Download Authorization

	Chapter 6 Production Management
	Chapter 7 DEBUG WITH ROCKEY6 SMART SIMULATOR
	7.1 Configure Keil IDE
	7.2 Create a project
	7.3 Project Configuration
	7.4 Debugging
	7.5 Quit
	7.6 Sample Debugging
	7.7 Write Program to the real card
	7.8 Summary

	Chapter 8 ROCKEY6 SMART Essential
	8.1 Development Introduction
	8.2 Fundamental Usages
	8.3 Creating C51 Project
	8.4 Creating an Executable File in the Dongle
	8.5 Editing and Encrypting Dongle Intercommunication Program
	8.6 Core Code Selection
	8.7 Summary

	Chapter 9 ROCKEY6 SMART Communication API Reference
	9.1 int DIC_Find()
	9.2 int DIC_FindByMgrCode(void * pMgrCode)
	9.3 int DIC_Open (int hic, char* reader_name)
	9.4 int DIC_Close(int hic)
	9.5 int DIC_Command(int hic, int cmd, void* data)
	9.6 int DIC_Get(void* target, int p1, int p2, char* pstr);
	9.7 int DIC_Set(void* target, int p1, int p2, int p3, char* pstr)
	9.8 int DIC_GetVersion(char* ver)
	9.9 Returned Error Code
	9.10 Authorization

	Chapter 10 API Reference and Samples
	10.1 API Reference
	10.2 Sample01 Fundamental Framework
	10.3 Sample02 Traversing Dongles
	10.4 Sample03 Dynamic Linked Mode
	10.5 Sample04 Get Manufacture and Volume Information
	10.6 Sample05 Get Manufacture Time, Hardware Serial Number, Shipping Time, and COS Version
	10.7 Sample06 Get Zone Code, Reseller Code, User Code 1 &User Code 2
	10.8 Sample07 Random Number
	10.9 Sample08 Super Password
	10.10 Sample09 Directories and Files
	10.11 Sample10 Remote Update
	10.12 Sample11 Write and Execute Program
	10.13 Sample12 Double-Precision Point Calculation
	10.14 Sample13 Secure File Transfer
	10.15 Sample14 DES and 3DES Encryption and Decryption
	10.16 Sample15 RSA Encryption and Decryption
	10.17 Sample16 Counter Usage
	10.18 Sample17 Reading the Remaining Space
	10.19 Sample18 Unlock the Dongle According To the Manufacture ID

	Chapter 11 System Call Function Usage
	11.1 Memory management
	11.2 Fundamental Framework
	11.3 File operation
	11.4 Invoke Executable Programs
	11.5 System Information and Security Mechanism
	11.6 RSA Encryption and Decryption
	11.7 DES Encryption and Decryption
	11.8 Obtain Random Number
	11.9 Float Function Libraries Usage
	11.10 Release Management

	Chapter 12 Advanced File System Application
	12.1 Filter File
	12.2 APDU
	12.3 ROCKEY6 SMART APDU Command Set
	12.4 Filter APDU

	Chapter 13 COS System Call Reference
	13.1 File Operations
	13.2 Security Mechanism
	13.3 System Services
	13.4 System Information
	13.5 Double Precision Float Calculation
	13.6 Float Point Library Expansion
	13.7 Encryption and Decryption Functions
	13.8 Timer and Counter
	13.9 Others
	13.10 System Function Call Error Code

	Appendix
	Appendix A Glossary of Terms
	A1. Main program
	A2. Protected program
	A3. Protected execution
	A4. Executable file

	 Appendix B TERMS
	B1 The Common Errors in the C51 Program
	B2 ROCKEY6 SMART Developer’s Kit

